
Program Mikrokontroller Atmega 2560

#include <SIM800.h>

unsigned long bauds = 9600;

#include <Wire.h>

#include <RtcDS1307.h>

RtcDS1307<TwoWire> Rtc(Wire);

#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x3f, 20, 4);

#include <Adafruit_Fingerprint.h>

//#include <SoftwareSerial.h>

//SoftwareSerial mySerial(2, 3);

Adafruit_Fingerprint finger = Adafruit_Fingerprint(&Serial2);

int seq, steps;

unsigned long m;

String nim[4];

String nama[4];

String no[4];

String waktu;

String tAbsen;

unsigned char noHp[14];

int btIn = A0;

int btOut = A1;

int bt1[2], bt2[2];

int fp;

void setup()

{

 nim[1] = "1234567890";

 nim[2] = "1234567891";

 nim[3] = "1234567892";

 nama[1] = "Dessy";

 nama[2] = "Shellia";

 nama[3] = "Dasanti";

 no[1] = "\"+6285782221328\""; //6285782221328

 no[2] = "\"+6285782221328\"";

 no[3] = "\"+6285782221328\"";

 Serial.begin(9600);

 while (!Serial);

 delay(100);

http://digilib.mercubuana.ac.id/

 //--

-

 Serial.println("\n\nAdafruit finger detect test");

 finger.begin(57600);

 while (1) {

 if (finger.verifyPassword()) {

 Serial.println("Found fingerprint sensor!");

 break;

 } else {

 Serial.println("Did not find fingerprint sensor :(");

 delay(1000);

 }

 }

 finger.getTemplateCount();

 Serial.print("Sensor contains ");

Serial.print(finger.templateCount); Serial.println(" templates");

 Serial.println("Waiting for valid finger...");

 //--

-

 Serial.print("compiled: ");

 Serial.print(__DATE__);

 Serial.println(__TIME__);

 Rtc.Begin();

 RtcDateTime compiled = RtcDateTime(__DATE__, __TIME__);

 // printDateTime(compiled);

 Serial.println();

 if (!Rtc.IsDateTimeValid())

 {

 Serial.println("RTC lost confidence in the DateTime!");

 Rtc.SetDateTime(compiled);

 }

 if (!Rtc.GetIsRunning())

 {

 Serial.println("RTC was not actively running, starting now");

 Rtc.SetIsRunning(true);

 }

 RtcDateTime now = Rtc.GetDateTime();

 if (now < compiled)

 {

 Serial.println("RTC is older than compile time! (Updating

DateTime)");

http://digilib.mercubuana.ac.id/

 Rtc.SetDateTime(compiled);

 }

 else if (now > compiled)

 {

 Serial.println("RTC is newer than compile time. (this is

expected)");

 }

 else if (now == compiled)

 {

 Serial.println("RTC is the same as compile time! (not expected but

all is fine)");

 }

 Rtc.SetSquareWavePin(DS1307SquareWaveOut_Low);

 if (!Rtc.IsDateTimeValid())

 {

 Serial.println("RTC lost confidence in the DateTime!");

 }

 //--

-

 for (int z = 0; z < 4; z++) {

 SIM.begin(bauds);

 delay(100);

 SIM.setTimeout(3000);

 SIM.cmdBenchmark(true);

 delay(1000);

 SIM.smsDel (TEST);

 SIM.smsFormat (SET, "1");

 }

 //--

-

 homes();

 Serial.println();

 seq = 0;

 steps = 0;

 pinMode(btIn, INPUT_PULLUP);

 pinMode(btOut, INPUT_PULLUP);

 lcd.init();

 lcd.backlight();

 homes();

}

void loop() // run over and over again

http://digilib.mercubuana.ac.id/

{

 toogle_steps();

 update_time();

 getFingerprintIDez();

 absen();

 delay(50); //don't ned to run this at full speed.

}

void homes() {

 lcd.clear();

 RtcDateTime now = Rtc.GetDateTime();

 lcd.setCursor(0, 0);

 lcd.print(" Absensi Siswa ");

 lcd.setCursor(0, 1);

 if (steps == 0) lcd.print("Absen : Masuk ");

 if (steps == 1) lcd.print("Absen : Keluar ");

 printDateTime(now);

}

void toogle_steps() {

 bt1[0] = digitalRead(btIn);

 bt2[0] = digitalRead(btOut);

 if (bt1[0] != bt1[1]) {

 bt1[1] = bt1[0];

 if (bt1[1] == 0) {

 lcd.setCursor(0, 1);

 lcd.print("Absen : Masuk ");

 steps = 0;

 delay(100);

 }

 }

 if (bt2[0] != bt2[1]) {

 bt2[1] = bt2[0];

 if (bt2[1] == 0) {

 lcd.setCursor(0, 1);

 lcd.print("Absen : Keluar ");

 steps = 1;

 delay(100);

 }

 }

}

void update_time() {

 if (millis() - m >= 1000) {

 m = millis();

http://digilib.mercubuana.ac.id/

 if (!Rtc.IsDateTimeValid())

 {

 Serial.println("RTC lost confidence in the DateTime!");

 }

 RtcDateTime now = Rtc.GetDateTime();

 printDateTime(now);

 Serial.println();

 }

}

// returns -1 if failed, otherwise returns ID #

int getFingerprintIDez() {

 if (seq == 0) {

 uint8_t p = finger.getImage();

 if (p != FINGERPRINT_OK) return -1;

 p = finger.image2Tz();

 if (p != FINGERPRINT_OK) return -1;

 p = finger.fingerFastSearch();

 if (p != FINGERPRINT_OK) {

 Serial.println("Tidak Ditemukan Dalam Database");

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Finger Print Invalid");

 lcd.setCursor(0, 1);

 lcd.print(" Tidak Ada Dalam Db ");

 lcd.setCursor(0, 3);

 lcd.print("Bersihkan Sidik Jari");

 delay(3000);

 homes();

 seq = 1;

 return -1;

 }

 fp = finger.fingerID;

 // found a match!

 Serial.print("Found ID #"); Serial.print(fp);

 Serial.print(" with confidence of ");

Serial.println(finger.confidence);

 seq = 1;

 return finger.fingerID;

 }

 if (seq == 1) {

 uint8_t p = finger.getImage();

 switch (p) {

 case FINGERPRINT_NOFINGER:

 Serial.println("No finger detected");

http://digilib.mercubuana.ac.id/

 seq = 0;

 fp = 0;

 break;

 }

 }

}

void absen() {

 if (seq == 1 && fp > 0 && steps == 0) {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print(" Selamat Datang ");

 lcd.setCursor(0, 1);

 lcd.print("Nama : ");

 lcd.print(nama[fp]);

 lcd.setCursor(0, 2);

 lcd.print("Nim : ");

 lcd.print(nim[fp]);

 lcd.setCursor(0, 3);

 lcd.print("Absen : ");

 lcd.print(waktu);

 String msg;

 char m[250];

 char n[250];

 msg = "Sistem Absensi Datang";

 msg += "\n";

 msg += "Nama : ";

 msg += nama[fp];

 msg += "\n";

 msg += "Nim : ";

 msg += nim[fp];

 msg += "\n";

 msg += "Waktu Absen : ";

 msg += tAbsen;

 no[fp].toCharArray(n, 250);

 msg.toCharArray(m, 250);

 SIM.smsSend(n, m);

 delay(3000);

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print(" Have A Nice Day ");

 lcd.setCursor(0, 1);

 lcd.print(" ^_^ ");

http://digilib.mercubuana.ac.id/

 delay(3000);

 seq = 0;

 fp = 0;

 homes();

 }

 if (seq == 1 && fp > 0 && steps == 1) {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print(" Selamat Jalan ");

 lcd.setCursor(0, 1);

 lcd.print("Nama : ");

 lcd.print(nama[fp]);

 lcd.setCursor(0, 2);

 lcd.print("Nim : ");

 lcd.print(nim[fp]);

 lcd.setCursor(0, 3);

 lcd.print("Absen : ");

 lcd.print(waktu);

 String msg;

 char m[250];

 char n[250];

 msg = "Sistem Absensi Pulang";

 msg += "\n";

 msg += "Nama : ";

 msg += nama[fp];

 msg += "\n";

 msg += "Nim : ";

 msg += nim[fp];

 msg += "\n";

 msg += "Waktu Absen : ";

 msg += tAbsen;

 no[fp].toCharArray(n, 250);

 msg.toCharArray(m, 250);

 SIM.smsSend(n, m);

 delay(3000);

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print(" ThankYou n See You ");

 lcd.setCursor(0, 1);

 lcd.print(" ^_^ ");

 lcd.setCursor(0, 3);

 lcd.print(" God Bless You ");

http://digilib.mercubuana.ac.id/

 delay(3000);

 seq = 0;

 fp = 0;

 homes();

 }

}

#define countof(a) (sizeof(a) / sizeof(a[0]))

void printDateTime(const RtcDateTime& dt)

{

 char datestring[25];

 snprintf_P(datestring,

 countof(datestring),

 PSTR("%02u/%02u/%04u %02u:%02u:%02u"),

 dt.Day(),

 dt.Month(),

 dt.Year(),

 dt.Hour(),

 dt.Minute(),

 dt.Second());

 Serial.println(datestring);

 tAbsen = "";

 for (int i = 0; i < 20; i++) {

 tAbsen += datestring[i];

 }

 lcd.setCursor(0, 3);

 lcd.print(" ");

 lcd.setCursor(0, 3);

 lcd.print(datestring);

 char datestring2[9];

 snprintf_P(datestring2,

 countof(datestring2),

 PSTR("%02u:%02u:%02u"),

 dt.Hour(),

 dt.Minute(),

 dt.Second());

 waktu = "";

 for (int i = 0; i < 8; i++) {

 waktu += datestring2[i];

 }

 // Serial.println(waktu);

http://digilib.mercubuana.ac.id/

}

http://digilib.mercubuana.ac.id/

Fingerprint Sensor Module with Arduino (FPM10A)

Introducing the Fingerprint Sensor Module in the following figure, made fingerprint recognition more accessible and
easy to add to your projects.
This means that is is super easy to make fingerprint collection, registration, comparison and search.

These modules come with FLASH memory to store the fingerprints and work with any microcontroller or system with TTL serial.
These modules can be added to security systems, door locks, time attendance systems, and much more.
Prices for this sensor greatly vary from $10

Specifications

Voltage supply: DC 3.6 to 6.0V, Current supply: <120mA, Backlight color: green, Interface: UART
Bad rate: 9600, Safety level: five (from low to high: 1,2,3,4,5), False Accept Rate (FAR): <0.001% (security level 3)
False Reject Rate (FRR): <1.0% (security level 3), Able to store 127 different fingerprints

Sensor Pinout

The sensor has six pins that are labeled in the figure below.

The fingerprint sensor module used in this project came with really thin wires, so soldering breadboard-friendly wires was needed.
We recommend using different colors according to the pin function. In our case:

http://digilib.mercubuana.ac.id/

DNC – white wires
VCC – red wire
TX – blue wire
RX – green wire
GND – black wire

The following table shows how to wire the sensor to the Arduino.

Fingerprint Sensor Arduino

VCC 5V (it also works with 3.3V)

TX RX (digital pin 2, software serial)

RX TX (digital pin 3, software serial)

GND GND

Installing the Adafruit Fingerprint Sensor Library

The easiest way to control the fingerprint sensor module with the Arduino is by using the Adafruit library for this sensor.
Follow the next instructions to install the library:

1. Click here to download the Adafruit Fingerprint Sensor library.

2. Unzip the .zip folder and you should get Adafruit-Fingerprint-Sensor-Library-master folder

3. Rename your folder from Adafruit-Fingerprint-Sensor-Library-master folder to Adafruit_Fingerprint_Sensor_Library

folder

4. Move the folder to your Arduino IDE installation libraries folder

5. Finally, re-open your Arduino IDE

Enroll a New Fingerprint

Having the fingerprint sensor module wired to the Arduino, follow the next steps to enroll a new fingerprint. Make sure you’ve
installed the Adafruit Fingerprint Sensor library previously.

http://digilib.mercubuana.ac.id/

1. In the Arduino IDE, go to File > Examples > Adafruit Fingerprint Sensor Library > Enroll.

2. Upload the code, and open the serial monitor at a baud rate of 9600.

3. You should enter an ID for the fingerprint. As this is your first fingerprint, type 1 at the top left corner, and then, click the Send
button.

4. Place your finger on the scanner and follow the instructions on the serial monitor.

You’ll be asked to place the same finger twice on the scanner.
If you get the “Prints matched!” message, as shown below, your fingerprint was successfully stored.
If not, repeat the process, until you succeed.

http://digilib.mercubuana.ac.id/

Store as many fingerprints you want using this method.

Finding a Match

You now should have several fingerprints saved on different IDs. To find a match with the fingerprint sensor, follow the next
instructions.

1. In the Arduino IDE, go to File > Examples > Adafruit Fingerprint Sensor Library > Fingerprint and upload the code to your
Arduino board.

2. Open the Serial Monitor at a baud rate of 9600. You should see the following message:

3. Place the finger to be identified on the scan.

4. On the serial monitor, you can see the ID that matches the fingerprint. It also shows the confidence – the higher the confidence,
the similar the fingerprint is with the stored fingerprint.

http://digilib.mercubuana.ac.id/

Project Example – Show Fingerprint Match on OLED display

In this project example, we’ll enroll two fingerprints from two different persons.
Then, we’ll display a greeting message accordingly to the match found, on an OLED display.
For this example you’ll need the following parts:

You can use the preceding links or go directly to MakerAdvisor.com/tools to find all the parts for your projects at the best price!

Schematics

Here’s the wiring diagram you should follow to make the circuit for this project.

http://digilib.mercubuana.ac.id/

Installing the 0.96 inch OLED libraries

To control the OLED display you need the “Adafruit_GFX.h” library and “Adafruit_SSD1306.h” library.
Follow the next steps to install those libraries:

Installing the Adafruit_GFX library

1. Click here to download the Adafruit GFX library. You should have a .zip folder in your Downloads folder

2. Unzip the .zip folder and you should get Adafruit-GFX-Library-master folder

3. Rename your folder from Adafruit-GFX-Library-master to Adafruit_GFX_Library (you really need ro replace those “-”

by “_”)

4. Move the Adafruit_GFX_Library folder to your Arduino IDE installation libraries folder

5. Finally, re-open your Arduino IDE

Installing the adafruit_SSD1306 library

1. Click here to download the Adafruit_SSD1306 library. Y

2. Unzip the .zip folder and you should get Adafruit-GFX-Library-master folder

3. Rename your folder from Adafruit_SSD1306-master to Adafruit_SSD1306

4. Move the Adafruit_SSD1306 folder to your Arduino IDE installation libraries folder

http://digilib.mercubuana.ac.id/

5. Finally, re-open your Arduino IDE

Code

Before uploading the code, you need to enroll different fingerprints from different persons. Go to “Enroll a New Fingerprint”
section above, upload the given code and follow the instructions to enroll two fingerprints.
Then, modify the code so that the fingerprint IDs match the name of the persons enrolled – scroll down to page for an explanation
of the code.
Finally, you can upload the code provided.

#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);

#include <Adafruit_Fingerprint.h>
#include <SoftwareSerial.h>
SoftwareSerial mySerial(2, 3);

Adafruit_Fingerprint finger = Adafruit_Fingerprint(&mySerial);
int fingerprintID = 0;
String IDname;

void setup(){
//Fingerprint sensor module setup
Serial.begin(9600);
// set the data rate for the sensor serial port
finger.begin(57600);

if (finger.verifyPassword()) {
Serial.println("Found fingerprint sensor!");
}
else {
Serial.println("Did not find fingerprint sensor :(");
while (1) { delay(1); }
}

//OLED display setup
Wire.begin();
display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
//displays main screen
displayMainScreen();
}

void loop(){
displayMainScreen();
fingerprintID = getFingerprintIDez();

http://digilib.mercubuana.ac.id/

delay(50);
if(fingerprintID == 1 || fingerprintID == 3 || fingerprintID == 4 || fingerprintID == 5){
IDname = "Sara";
displayUserGreeting(IDname);
}
else if(fingerprintID == 2){
IDname = "Rui";
displayUserGreeting(IDname);
}
}

// returns -1 if failed, otherwise returns ID #
int getFingerprintIDez() {
uint8_t p = finger.getImage();
if (p != FINGERPRINT_OK) return -1;

p = finger.image2Tz();
if (p != FINGERPRINT_OK) return -1;

p = finger.fingerFastSearch();
if (p != FINGERPRINT_OK) return -1;

// found a match!
Serial.print("Found ID #");
Serial.print(finger.fingerID);
Serial.print(" with confidence of ");
Serial.println(finger.confidence);
return finger.fingerID;
}

void displayMainScreen(){
display.clearDisplay();
display.setTextSize(1);
display.setTextColor(WHITE);
display.setCursor(7,5);
display.println("Waiting fingerprint");
display.setTextSize(1);
display.setTextColor(WHITE);
display.setCursor(52,20);
display.println("...");
display.display();
delay(2000);
}

void displayUserGreeting(String Name){
display.clearDisplay();
display.setTextColor(WHITE);
display.setTextSize(2);
display.setCursor(0,0);

http://digilib.mercubuana.ac.id/

display.print("Hello");
display.setCursor(0,15);
display.print(Name);
display.display();
delay(5000);
fingerprintID = 0;
}

Importing libraries

The code starts by importing the needed libraries to write in the OLED display, and creates an Adafruit_SSD1306 object called
display.

#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
#define OLED_RESET 4
Adafruit_SSD1306 display(OLED_RESET);

We also need to import the libraries needed for the fingerprint sensor: Adafruit_Fingerprint.h and SoftwareSerial.h.

#include <Adafruit_Fingerprint.h>
#include <SoftwareSerial.h>
SoftwareSerial mySerial(2, 3);

The following line sets software serial on pins 2 and 3. Pin 2 as RX, and Pin 3 as TX.

SoftwareSerial mySerial(2, 3);

Then, we create a an Adafruit_Fingerprint object called finger on the serial pins we’ve set previously.

Adafruit_Fingerprint finger = Adafruit_Fingerprint(&mySerial);

The next two lines create variables to hold the fingerprint ID and the IDname.

int fingerprintID = 0;
String IDname;

setup()

In the setup(), both the fingerprint sensor and the OLED display are initialized. We also print a message on the serial monitor so that
we know if the fingerprint sensor was found successfully.

void setup(){
//Fingerprint sensor module setup
Serial.begin(9600);
// set the data rate for the sensor serial port
finger.begin(57600);

if (finger.verifyPassword()) {

http://digilib.mercubuana.ac.id/

Serial.println("Found fingerprint sensor!");
}
else {
Serial.println("Did not find fingerprint sensor :(");
while (1) { delay(1); }

}

//OLED display setup
Wire.begin();
display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
//displays main screen
displayMainScreen();
}

loop()

In the loop(), the code displays the main screen on the OLED display – this is done in the displayMainScreen() function. Then, the
code is continuously checking for incoming fingerprints. If the sensor founds a saved fingerprint, the Arduino saves the
corresponding ID in the fingerprintID variable.

Then, the code has an if/else statement to check the ID the fingerprint corresponds to. You should edit the following lines of code
with the corresponding IDs and names.

if(fingerprintID == 1 || fingerprintID == 3 || fingerprintID == 4 || fingerprintID == 5){
IDname = "Sara";
displayUserGreeting(IDname);
}
else if(fingerprintID == 2){
IDname = "Rui";

Sometimes, the sensor will recognize a fingerprint better if it is saved several times in different IDs. After identifying the ID name,
the OLED displays a greeting – this is done in the displayUserGreeting() function,

Demonstration

Now, when a person with a saved fingerprint places the finger on the sensor, it displays a greeting message.

http://digilib.mercubuana.ac.id/

The Arduino Mega 2560 is a microcontroller board based on the ATmega2560
(datasheet). It has 54 digital input/output pins (of which 14 can be used as PWM outputs),
16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB
connection, a power jack, an ICSP header, and a reset button. It contains everything
needed to support the microcontroller; simply connect it to a computer with a USB cable or
power it with a AC-to-DC adapter or battery to get started. The Mega is compatible with
most shields designed for the Arduino Duemilanove or Diecimila.

http://digilib.mercubuana.ac.id/

http://www.atmel.com/dyn/resources/prod_documents/doc2549.PDF

EAGLE files: arduino-mega2560-reference-design.zip Schematic: arduino-mega2560-schematic.pdf

Microcontroller ATmega2560
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 54 (of which 14 provide PWM output)
Analog Input Pins 16
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA
Flash Memory 256 KB of which 8 KB used by bootloader
SRAM 8 KB
EEPROM 4 KB
Clock Speed 16 MHz

http://digilib.mercubuana.ac.id/

http://dev.arduino.cc/wiki/uno/Main/ArduinoBoardMega2560?action=upload&upname=arduino-mega2560-schematic.pdf
http://dev.arduino.cc/wiki/uno/Main/ArduinoBoardMega2560?action=upload&upname=arduino-mega2560-reference-design.zip
http://dev.arduino.cc/wiki/uno/Main/ArduinoBoardMega2560?action=upload&upname=arduino-mega2560-reference-design.zip

The Arduino Mega2560 can be powered via the USB connection or with an external power supply. The power source is
selected automatically. External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The
adapter can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a battery
can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V pin may
supply less than five volts and the board may be unstable. If using more than 12V, the voltage regulator may overheat
and damage the board. The recommended range is 7 to 12 volts.

The Mega2560 differs from all preceding boards in that it does not use the FTDI USB-to-serial driver chip. Instead, it
features the Atmega8U2 programmed as a USB-to-serial converter.

The power pins are as follows:

• VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to 5 volts
from the USB connection or other regulated power source). You can supply voltage through this pin, or, if
supplying voltage via the power jack, access it through this pin.

• 5V. The regulated power supply used to power the microcontroller and other components on the board. This
can come either from VIN via an on-board regulator, or be supplied by USB or another regulated 5V supply.

• 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
• GND. Ground pins.

The ATmega2560 has 256 KB of flash memory for storing code (of which 8 KB is used for the bootloader), 8 KB of
SRAM and 4 KB of EEPROM (which can be read and written with the EEPROM library).

Each of the 54 digital pins on the Mega can be used as an input or output, using pinMode(), digitalWrite(), and
digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an
internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

• Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and 16 (TX); Serial 3: 15 (RX) and
14 (TX). Used to receive (RX) and transmit (TX) TTL serial data. Pins 0 and 1 are also connected to the
corresponding pins of the ATmega8U2 USB-to-TTL Serial chip .

• External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt 4), 20 (interrupt 3), and 21
(interrupt 2). These pins can be configured to trigger an interrupt on a low value, a rising or falling edge, or a
change in value. See the attachInterrupt() function for details.

• PWM: 0 to 13. Provide 8-bit PWM output with the analogWrite() function.
• SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI communication, which, although

provided by the underlying hardware, is not currently included in the Arduino language. The SPI pins are also
broken out on the ICSP header, which is physically compatible with the Duemilanove and Diecimila.

• LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is on, when
the pin is LOW, it's off.

• I2C: 20 (SDA) and 21 (SCL). Support I2C (TWI) communication using the Wire library (documentation on the
Wiring website). Note that these pins are not in the same location as the I2C pins on the Duemilanove.

The Mega2560 has 16 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default
they measure from ground to 5 volts, though is it possible to change the upper end of their range using the AREF pin and
analogReference() function.

There are a couple of other pins on the board:

• AREF. Reference voltage for the analog inputs. Used with analogReference().
• Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to shields which

block the one on the board.

http://digilib.mercubuana.ac.id/

http://arduino.cc/en/Reference/AnalogReference
http://wiring.org.co/reference/libraries/Wire/index.html
http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/AttachInterrupt
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/PinMode
http://www.arduino.cc/en/Reference/EEPROM

The Arduino Mega2560 has a number of facilities for communicating with a computer, another Arduino, or
other microcontrollers. The ATmega2560 provides four hardware UARTs for TTL (5V) serial communication.
An ATmega8U2 on the board channels one of these over USB and provides a virtual com port to software on
the computer (Windows machines will need a .inf file, but OSX and Linux machines will recognize the board
as a COM port automatically. The Arduino software includes a serial monitor which allows simple textual
data to be sent to and from the board. The RX and TX LEDs on the board will flash when data is being
transmitted via the ATmega8U2 chip and USB connection to the computer (but not for serial communication
on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Mega's digital pins.

The ATmega2560 also supports I2C (TWI) and SPI communication. The Arduino software includes a Wire
library to simplify use of the I2C bus; see the documentation on the Wiring website for details. To use the SPI
communication, please see the ATmega2560 datasheet.

The Arduino Mega2560 can be programmed with the Arduino software (download). For details, see the
reference and tutorials.

The Atmega2560 on the Arduino Mega comes preburned with a bootloader that allows you to upload new
code to it without the use of an external hardware programmer. It communicates using the original STK500
protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial
Programming) header; see these instructions for details.

http://digilib.mercubuana.ac.id/

http://arduino.cc/en/Hacking/Programmer
http://www.atmel.com/dyn/resources/prod_documents/avr061.zip
http://www.atmel.com/dyn/resources/prod_documents/doc2525.pdf
http://arduino.cc/en/Tutorial/Bootloader
http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Main/Software
http://wiring.org.co/reference/libraries/Wire/index.html
http://www.arduino.cc/en/Reference/SoftwareSerial

Rather then requiring a physical press of the reset button before an upload, the Arduino Mega2560 is
designed in a way that allows it to be reset by software running on a connected computer. One of the
hardware flow control lines (DTR) of the ATmega8U2 is connected to the reset line of the ATmega2560 via a
100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the
chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload
button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the
lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Mega2560 is connected to either a computer running Mac OS X
or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second
or so, the bootloader is running on the Mega2560. While it is programmed to ignore malformed data (i.e.
anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a
connection is opened. If a sketch running on the board receives one-time configuration or other data when it
first starts, make sure that the software with which it communicates waits a second after opening the
connection and before sending this data.

The Mega contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can
be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset
by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

The Arduino Mega has a resettable polyfuse that protects your computer's USB ports from shorts and
overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer
of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection
until the short or overload is removed.

The maximum length and width of the Mega PCB are 4 and 2.1 inches respectively, with the USB connector
and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to
a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple
of the 100 mil spacing of the other pins.

The Mega is designed to be compatible with most shields designed for the Diecimila or Duemilanove. Digital
pins 0 to 13 (and the adjacent AREF and GND pins), analog inputs 0 to 5, the power header, and ICSP
header are all in equivalent locations. Further the main UART (serial port) is located on the same pins (0 and
1), as are external interrupts 0 and 1 (pins 2 and 3 respectively). SPI is available through the ICSP header on
both the Mega and Duemilanove / Diecimila. Please note that I2C is not located on the same pins on the
Mega (20 and 21) as the Duemilanove / Diecimila (analog inputs 4 and 5).

http://digilib.mercubuana.ac.id/

http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1213719666/all

Arduino can sense the environment by receiving input from a variety of sensors and can affect its
surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is
programmed using the Arduino programming language (based on Wiring) and the Arduino
development environment (based on Processing). Arduino projects can be stand-alone or they can
communicate with software on running on a computer (e.g. Flash, Processing, MaxMSP).

Arduino is a cross-platoform program. You’ll have to follow different instructions for your personal
OS. Check on the Arduino site for the latest instructions. http://arduino.cc/en/Guide/HomePage

Once you have downloaded/unzipped the arduino IDE, you can Plug the Arduino to your PC via USB cable.

Now you’re actually ready to “burn” your
first program on the arduino board. To
select “blink led”, the physical translation
of the well known programming “hello
world”, select

File>Sketchbook>
Arduino-0017>Examples>
Digital>Blink

Once you have your skecth you’ll
see something very close to the
screenshot on the right.

In Tools>Board select MEGA

Now you have to go to
Tools>SerialPort
and select the right serial port, the
one arduino is attached to.

http://digilib.mercubuana.ac.id/

http://arduino.cc/en/Guide/HomePage
http://www.processing.org/
http://wiring.org.co/
http://arduino.cc/en/Reference/HomePage

http://digilib.mercubuana.ac.id/

1. Warranties

1.1 The producer warrants that its products will conform to the Specifications. This warranty lasts for one (1) years from the date of the sale. The
producer shall not be liable for any defects that are caused by neglect, misuse or mistreatment by the Customer, including improper installation or testing,
or for any products that have been altered or modified in any way by a Customer. Moreover, The producer shall not be liable for any defects that result from
Customer's design, specifications or instructions for such products. Testing and other quality control techniques are used to the extent the producer deems
necessary.

1.2 If any products fail to conform to the warranty set forth above, the producer's sole liability shall be to replace such products. The producer's liability
shall be limited to products that are determined by the producer not to conform to such warranty. If the producer elects to replace such products, the
producer shall have a reasonable time to replacements. Replaced products shall be warranted for a new full warranty period.

1.3 EXCEPT AS SET FORTH ABOVE, PRODUCTS ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." THE PRODUCER DISCLAIMS ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, REGARDING PRODUCTS, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE

1.4 Customer agrees that prior to using any systems that include the producer products, Customer will test such systems and the functionality of the
products as used in such systems. The producer may provide technical, applications or design advice, quality characterization, reliability data or other
services. Customer acknowledges and agrees that providing these services shall not expand or otherwise alter the producer's warranties, as set forth
above, and no additional obligations or liabilities shall arise from the producer providing such services.

1.5 The Arduino products are not authorized for use in safety-critical applications where a failure of the product would reasonably be expected to cause
severe personal injury or death. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Arduino products are neither designed nor intended for use in military or aerospace applications or
environments and for automotive applications or environment. Customer acknowledges and agrees that any such use of Arduino products which is solely
at the Customer's risk, and that Customer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

1.6 Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its
products and any use of Arduino products in Customer's applications, notwithstanding any applications-related information or support that may be
provided by the producer.

2. Indemnification

The Customer acknowledges and agrees to defend, indemnify and hold harmless the producer from and against any and all third-party losses, damages,
liabilities and expenses it incurs to the extent directly caused by: (i) an actual breach by a Customer of the representation and warranties made under this
terms and conditions or (ii) the gross negligence or willful misconduct by the Customer.

3. Consequential Damages Waiver

In no event the producer shall be liable to the Customer or any third parties for any special, collateral, indirect, punitive, incidental, consequential or
exemplary damages in connection with or arising out of the products provided hereunder, regardless of whether the producer has been advised of the
possibility of such damages. This section will survive the termination of the warranty period.

4. Changes to specifications

The producer may make changes to specifications and product descriptions at any time, without notice. The Customer must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined." The producer reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The product information on the Web Site or Materials is
subject to change without notice. Do not finalize a design with this information.

The producer of Arduino has joined the Impatto Zero®
policy of LifeGate.it. For each Arduino board produced is
created / looked after half squared Km of Costa Rica’s
forest’s.

http://digilib.mercubuana.ac.id/

Systronix 20x4 LCD
Brief Technical Data

July 31, 2000

Here is brief data for the Systronix 20x4 character LCD. It is a DataVision part and uses the
Samsung KS0066 LCD controller. It's a clone of the Hitachi HD44780. We're not aware of any
incompatabilities between the two - at least we have never seen any in all the code and custom
applications we have done.

This 20x4 LCD is electrically and mechanically interchangeable with 20x4 LCDs from several
other vendors. The only differences we've seen among different 20x4 LCDs are:

1) LED backlight brightness, voltage and current vary widely, as does the quality of the display

2) There is a resistor “Rf” which sets the speed of the LCD interface by controlling the internal
oscillator frequency. Several displays we have evaluated have a low resistor value. This makes
the display too slow. Looking at the Hitachi data sheet page 56, it appears that perhaps the
“incorrect” resistor is really intended for 3V use of the displays.

At 5V the resistor Rf should be 91 Kohms. At 3V it should be 75 Kohms. Using a 3V display at
5V is acceptable from a voltage standpoint (the display can operate on 3-5V) but the oscillator
will then be running too slowly. One fix is to always check the busy flag and not use a fixed time
delay in your code, then it will work regardless of the LCD speed. The other option is to always
allow enough delay for the slower display.

All Systronix 20x4 LCDs have the 91 Kohm resistor and are intended for 5V operation.

Thank you for purchasing Systronix embedded control products and accessories. If you have any
other questions please email to support@systronix.com or phone +1-801-534-1017, fax +1-801-
534-1019.

http://digilib.mercubuana.ac.id/

Bruce Boyes

i ABSOLUTE MAXIMUM RATINGS i ELECTRICAL CHARACTERISTICS (REFLECTIVE TYPE)

Item Symbol Unit Item Symbol Condition Unit
Standard Value Standard Value

Min. Typ. Max. Min. Typ. Max.
Supply Voltage for Logic Input “High” VoltageV 0 7.0 V V 2.2 VDD- Y Y Y

Supply Voltage for LCD Driver Input “Low” VoltageV -V 13.5 V V 0.6 VDD EE Y Y Y Y Y

Input Voltage Output “High” VoltageV V V V V 2.2 VI SS Y Y YDD

Operature Temp. Output “Low” VoltageTopr 0 50 °C V 0.4 VY Y Y

Storage Temp. Supply CurrentTstg -20 70 °C I V =5.0A 2.5 4.0 mAY Y

Test

IH VEE

IL

OH I =0.2mAOH

OL I =1.2mAOL

DD DD

i PIN FUNCTIONS i BLOCK DIAGRAM
No Symbol Function No Symbol Function
1 V GND, 0V 10 DB3 Data BusSS
2 V +5V 11 DB4DD Y

3 V for LCD Drive 12 DB5EE Y

4 RS Function Select 13 DB6 Y

5 R/W Read/Write 14 DB7 Y

6 E Enable Signal 15 LEDA
LED Power Supply

7-9 DB0-DB2 Data Bus Line 16 LEDA

http://digilib.mercubuana.ac.id/

HD44780U

184

Table 4 Correspondence between Character Codes and Character Patterns (ROM Code: A00)

xxxx0000

xxxx0001

xxxx0010

xxxx0011

xxxx0100

xxxx0101

xxxx0110

xxxx0111

xxxx1000

xxxx1001

xxxx1010

xxxx1011

xxxx1100

xxxx1101

xxxx1110

xxxx1111

0000 0010 0011 0100 0101 0110 0111 1010 1011 1100 1101 1110 1111
Upper 4

BitsLower
4 Bits

CG
RAM
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

0001 1000 1001

Note: The user can specify any pattern for character-generator RAM.

http://digilib.mercubuana.ac.id/

HD44780U

212

Initializing by Instruction

If the power supply conditions for correctly operating the internal reset circuit are not met, initialization
by instructions becomes necessary.

Refer to Figures 25 and 26 for the procedures on 8-bit and 4-bit initializations, respectively.

Power on

Wait for more than 15 ms
after VCC rises to 4.5 V

Wait for more than 4.1 ms

Wait for more than 100 µs

RS
0

R/W
0

DB7
0

DB6
0

DB5
1

DB4
1

DB3DB2 DB1 DB0
* * * *

RS
0

R/W
0

DB7
0

DB6
0

DB5�
1

DB4
1

DB3DB2DB1DB0
* * * *

RS
0

R/W
0

DB7
0

DB6
0

DB5
1

DB4
1

DB3DB2DB1
* * *

DB0
*

RS
0

R/W
0

DB7
0

DB6
0

DB5
1

DB4
1

DB3
N

DB2
F

DB1DB0
* *

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

I/D

0

1

S

Initialization ends

BF cannot be checked before this instruction.

Function set (Interface is 8 bits long.)

BF cannot be checked before this instruction.

Function set (Interface is 8 bits long.)

BF cannot be checked before this instruction.

Function set (Interface is 8 bits long.)

BF can be checked after the following instructions.
When BF is not checked, the waiting time between
instructions is longer than the execution instuction
time. (See Table 6.)

Function set (Interface is 8 bits long. Specify the
number of display lines and character font.)
The number of display lines and character font
cannot be changed after this point.

Display off

Display clear

Entry mode set

Wait for more than 40 ms
after VCC rises to 2.7 V

Figure 25 8-Bit Interface

http://digilib.mercubuana.ac.id/

HD44780U

190

Reset Function

Initializing by Internal Reset Circuit

An internal reset circuit automatically initializes the HD44780U when the power is turned on. The
following instructions are executed during the initialization. The busy flag (BF) is kept in the busy state
until the initialization ends (BF = 1). The busy state lasts for 10 ms after VCC rises to 4.5 V.

1. Display clear

2. Function set:

DL = 1; 8-bit interface data

N = 0; 1-line display

F = 0; 5 × 8 dot character font

3. Display on/off control:

D = 0; Display off

C = 0; Cursor off

B = 0; Blinking off

4. Entry mode set:

I/D = 1; Increment by 1

S = 0; No shift

Note: If the electrical characteristics conditions listed under the table Power Supply Conditions Using
Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail
to initialize the HD44780U. For such a case, initial-ization must be performed by the MPU as
explained in the section, Initializing by Instruction.

Instructions

Outline

Only the instruction register (IR) and the data register (DR) of the HD44780U can be controlled by the
MPU. Before starting the internal operation of the HD44780U, control information is temporarily stored
into these registers to allow interfacing with various MPUs, which operate at different speeds, or various
peripheral control devices. The internal operation of the HD44780U is determined by signals sent from
the MPU. These signals, which include register selection signal (RS), read/

write signal (R/:), and the data bus (DB0 to DB7), make up the HD44780U instructions (Table 6). There
are four categories of instructions that:

• Designate HD44780U functions, such as display format, data length, etc.

• Set internal RAM addresses

• Perform data transfer with internal RAM

• Perform miscellaneous functions

http://digilib.mercubuana.ac.id/

HD44780U

191

Normally, instructions that perform data transfer with internal RAM are used the most. However, auto-
incrementation by 1 (or auto-decrementation by 1) of internal HD44780U RAM addresses after each data
write can lighten the program load of the MPU. Since the display shift instruction (Table 11) can perform
concurrently with display data write, the user can minimize system development time with maximum
programming efficiency.

When an instruction is being executed for internal operation, no instruction other than the busy
flag/address read instruction can be executed.

Because the busy flag is set to 1 while an instruction is being executed, check it to make sure it is 0
before sending another instruction from the MPU.

Note: Be sure the HD44780U is not in the busy state (BF = 0) before sending an instruction from the
MPU to the HD44780U. If an instruction is sent without checking the busy flag, the time between
the first instruction and next instruction will take much longer than the instruction time itself.
Refer to Table 6 for the list of each instruc-tion execution time.

Table 6 Instructions

Code
Execution Time
(max) (when f cp or

Instruction RS R/ :: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description fOSC is 270 kHz)

Clear
display

0 0 0 0 0 0 0 0 0 1 Clears entire display and sets
DDRAM address 0 in address
counter.

Return
home

0 0 0 0 0 0 0 0 1 — Sets DDRAM address 0 in
address counter. Also returns
display from being shifted to
original position. DDRAM
contents remain unchanged.

1.52 ms

Entry
mode set

0 0 0 0 0 0 0 1 I/D S Sets cursor move direction
and specifies display shift.
These operations are
performed during data write
and read.

37 µs

Display
on/off
control

0 0 0 0 0 0 1 D C B Sets entire display (D) on/off,
cursor on/off (C), and blinking
of cursor position character
(B).

37 µs

Cursor or
display
shift

0 0 0 0 0 1 S/C R/L — — Moves cursor and shifts
display without changing
DDRAM contents.

37 µs

Function
set

0 0 0 0 1 DL N F — — Sets interface data length
(DL), number of display lines
(N), and character font (F).

37 µs

Set
CGRAM
address

0 0 0 1 ACG ACG ACG ACG ACG ACG Sets CGRAM address.
CGRAM data is sent and
received after this setting.

37 µs

Set
DDRAM
address

0 0 1 ADD ADD ADD ADD ADD ADD ADD Sets DDRAM address.
DDRAM data is sent and
received after this setting.

37 µs

Read busy
flag &
address

0 1 BF AC AC AC AC AC AC AC Reads busy flag (BF)
indicating internal operation is
being performed and reads
address counter contents.

0 µs

http://digilib.mercubuana.ac.id/

HD44780U

192

Table 6 Instructions (cont)

Code
Execution Time
(max) (when f cp or

Instruction RS R/ :: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Description f OSC is 270 kHz)

Write data
to CG or
DDRAM

1 0 Write data Writes data into DDRAM or
CGRAM.

37 µs
tADD = 4 µs*

Read data
from CG or
DDRAM

1 1 Read data Reads data from DDRAM or
CGRAM.

37 µs
tADD = 4 µs*

I/D = 1: Increment
I/D = 0: Decrement
S = 1: Accompanies display shift
S/C = 1: Display shift
S/C = 0: Cursor move
R/L = 1: Shift to the right
R/L = 0: Shift to the left
DL = 1: 8 bits, DL = 0: 4 bits
N = 1: 2 lines, N = 0: 1 line
F = 1: 5 × 10 dots, F = 0: 5 × 8 dots
BF = 1: Internally operating
BF = 0: Instructions acceptable

DDRAM: Display data RAM
CGRAM: Character generator

RAM
ACG: CGRAM address
ADD: DDRAM address

(corresponds to cursor
address)

AC: Address counter used for
both DD and CGRAM
addresses

Execution time
changes when
frequency changes
Example:
When fcp or fOSC is
250 kHz,
37 µs ×	 = 40 µs270

250

Note: — indicates no effect.
* After execution of the CGRAM/DDRAM data write or read instruction, the RAM address counter

is incremented or decremented by 1. The RAM address counter is updated after the busy flag
turns off. In Figure 10, tADD is the time elapsed after the busy flag turns off until the address
counter is updated.

Busy stateBusy signal
(DB7 pin)

Address counter
(DB0 to DB6 pins)

t ADD

A A + 1

Note: t depends on the operation frequency
t = 1.5/(f or f) seconds

ADD

ADD cp OSC

Figure 10 Address Counter Update

http://digilib.mercubuana.ac.id/

1 of 12 100101

FEATURES
� Real-time clock (RTC) counts seconds,

minutes, hours, date of the month, month, day
of the week, and year with leap-year
compensation valid up to 2100

� 56-byte, battery-backed, nonvolatile (NV)
RAM for data storage

� Two-wire serial interface
� Programmable squarewave output signal
� Automatic power-fail detect and switch

circuitry
� Consumes less than 500nA in battery backup

mode with oscillator running
� Optional industrial temperature range:

-40°C to +85°C
� Available in 8-pin DIP or SOIC
� Underwriters Laboratory (UL) recognized

ORDERING INFORMATION
DS1307 8-Pin DIP (300-mil)
DS1307Z 8-Pin SOIC (150-mil)
DS1307N 8-Pin DIP (Industrial)
DS1307ZN 8-Pin SOIC (Industrial)

PIN ASSIGNMENT

PIN DESCRIPTION
VCC - Primary Power Supply
X1, X2 - 32.768kHz Crystal Connection
VBAT - +3V Battery Input
GND - Ground
SDA - Serial Data
SCL - Serial Clock
SQW/OUT - Square Wave/Output Driver

DESCRIPTION
The DS1307 Serial Real-Time Clock is a low-power, full binary-coded decimal (BCD) clock/calendar
plus 56 bytes of NV SRAM. Address and data are transferred serially via a 2-wire, bi-directional bus.
The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The end of
the month date is automatically adjusted for months with fewer than 31 days, including corrections for
leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM indicator. The
DS1307 has a built-in power sense circuit that detects power failures and automatically switches to the
battery supply.

DS1307
64 x 8 Serial Real-Time Clock

www.maxim-ic.com

DS1307 8-Pin SOIC (150-mil)

DS1307 8-Pin DIP (300-mil)

X1
X2

VBAT

GND

VCC

SQW/OUT
SCL

l

2

3

4

8

7

6

5 SDA

l

2

3

4

8

7

6

5

X1
X2

VBAT

GND

VCC

SQW/OUT
SCL
SDA

http://digilib.mercubuana.ac.id/

DS1307

2 of 12

OPERATION
The DS1307 operates as a slave device on the serial bus. Access is obtained by implementing a START
condition and providing a device identification code followed by a register address. Subsequent registers
can be accessed sequentially until a STOP condition is executed. When VCC falls below 1.25 x VBAT the
device terminates an access in progress and resets the device address counter. Inputs to the device will
not be recognized at this time to prevent erroneous data from being written to the device from an out of
tolerance system. When VCC falls below VBAT the device switches into a low-current battery backup
mode. Upon power-up, the device switches from battery to VCC when VCC is greater than VBAT + 0.2V
and recognizes inputs when VCC is greater than 1.25 x VBAT. The block diagram in Figure 1 shows the
main elements of the serial RTC.

DS1307 BLOCK DIAGRAM Figure 1

TYPICAL OPERATING CIRCUIT

http://digilib.mercubuana.ac.id/

DS1307

3 of 12

SIGNAL DESCRIPTIONS
VCC, GND – DC power is provided to the device on these pins. VCC is the +5V input. When 5V is
applied within normal limits, the device is fully accessible and data can be written and read. When a 3V
battery is connected to the device and VCC is below 1.25 x VBAT, reads and writes are inhibited. However,
the timekeeping function continues unaffected by the lower input voltage. As VCC falls below VBAT the
RAM and timekeeper are switched over to the external power supply (nominal 3.0V DC) at VBAT.

VBAT – Battery input for any standard 3V lithium cell or other energy source. Battery voltage must be
held between 2.0V and 3.5V for proper operation. The nominal write protect trip point voltage at which
access to the RTC and user RAM is denied is set by the internal circuitry as 1.25 x VBAT nominal. A
lithium battery with 48mAhr or greater will back up the DS1307 for more than 10 years in the absence of
power at 25ºC. UL recognized to ensure against reverse charging current when used in conjunction with a
lithium battery.

See “Conditions of Acceptability” at http://www.maxim-ic.com/TechSupport/QA/ntrl.htm.

SCL (Serial Clock Input) – SCL is used to synchronize data movement on the serial interface.

SDA (Serial Data Input/Output) – SDA is the input/output pin for the 2-wire serial interface. The SDA
pin is open drain which requires an external pullup resistor.

SQW/OUT (Square Wave/Output Driver) – When enabled, the SQWE bit set to 1, the SQW/OUT pin
outputs one of four square wave frequencies (1Hz, 4kHz, 8kHz, 32kHz). The SQW/OUT pin is open
drain and requires an external pull-up resistor. SQW/OUT will operate with either Vcc or Vbat applied.

X1, X2 – Connections for a standard 32.768kHz quartz crystal. The internal oscillator circuitry is
designed for operation with a crystal having a specified load capacitance (CL) of 12.5pF.

For more information on crystal selection and crystal layout considerations, please consult Application
Note 58, “Crystal Considerations with Dallas Real-Time Clocks.” The DS1307 can also be driven by an
external 32.768kHz oscillator. In this configuration, the X1 pin is connected to the external oscillator
signal and the X2 pin is floated.

RECOMMENDED LAYOUT FOR CRYSTAL

http://digilib.mercubuana.ac.id/

http://www.maxim-ic.com/TechSupport/QA/ntrl.htm

DS1307

4 of 12

CLOCK ACCURACY
The accuracy of the clock is dependent upon the accuracy of the crystal and the accuracy of the match
between the capacitive load of the oscillator circuit and the capacitive load for which the crystal was
trimmed. Additional error will be added by crystal frequency drift caused by temperature shifts. External
circuit noise coupled into the oscillator circuit may result in the clock running fast. See Application Note
58, “Crystal Considerations with Dallas Real-Time Clocks” for detailed information.

Please review Application Note 95, “Interfacing the DS1307 with a 8051-Compatible Microcontroller”
for additional information.

RTC AND RAM ADDRESS MAP
The address map for the RTC and RAM registers of the DS1307 is shown in Figure 2. The RTC registers
are located in address locations 00h to 07h. The RAM registers are located in address locations 08h to
3Fh. During a multi-byte access, when the address pointer reaches 3Fh, the end of RAM space, it wraps
around to location 00h, the beginning of the clock space.

DS1307 ADDRESS MAP Figure 2

CLOCK AND CALENDAR
The time and calendar information is obtained by reading the appropriate register bytes. The RTC
registers are illustrated in Figure 3. The time and calendar are set or initialized by writing the appropriate
register bytes. The contents of the time and calendar registers are in the BCD format. Bit 7 of register 0
is the clock halt (CH) bit. When this bit is set to a 1, the oscillator is disabled. When cleared to a 0, the
oscillator is enabled.

Please note that the initial power-on state of all registers is not defined. Therefore, it is important
to enable the oscillator (CH bit = 0) during initial configuration.

The DS1307 can be run in either 12-hour or 24-hour mode. Bit 6 of the hours register is defined as the
12- or 24-hour mode select bit. When high, the 12-hour mode is selected. In the 12-hour mode, bit 5 is
the AM/PM bit with logic high being PM. In the 24-hour mode, bit 5 is the second 10 hour bit (20-
23 hours).

On a 2-wire START, the current time is transferred to a second set of registers. The time information is
read from these secondary registers, while the clock may continue to run. This eliminates the need to re-
read the registers in case of an update of the main registers during a read.

SECONDS

MINUTES

HOURS

DAY

DATE

MONTH

YEAR

CONTROL

RAM
56 x 8

00H

07H
08H

3FH

http://digilib.mercubuana.ac.id/

DS1307

5 of 12

DS1307 TIMEKEEPER REGISTERS Figure 3

CONTROL REGISTER
The DS1307 control register is used to control the operation of the SQW/OUT pin.

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
OUT 0 0 SQWE 0 0 RS1 RS0

OUT (Output control): This bit controls the output level of the SQW/OUT pin when the square wave
output is disabled. If SQWE = 0, the logic level on the SQW/OUT pin is 1 if OUT = 1 and is 0 if
OUT = 0.

SQWE (Square Wave Enable): This bit, when set to a logic 1, will enable the oscillator output. The
frequency of the square wave output depends upon the value of the RS0 and RS1 bits. With the square
wave output set to 1Hz, the clock registers update on the falling edge of the square wave.

RS (Rate Select): These bits control the frequency of the square wave output when the square wave
output has been enabled. Table 1 lists the square wave frequencies that can be selected with the RS bits.

SQUAREWAVE OUTPUT FREQUENCY Table 1
RS1 RS0 SQW OUTPUT FREQUENCY

0 0 1Hz
0 1 4.096kHz
1 0 8.192kHz
1 1 32.768kHz

0

0

0 0 0 0

000

00

00000

http://digilib.mercubuana.ac.id/

DS1307

6 of 12

2-WIRE SERIAL DATA BUS
The DS1307 supports a bi-directional, 2-wire bus and data transmission protocol. A device that sends
data onto the bus is defined as a transmitter and a device receiving data as a receiver. The device that
controls the message is called a master. The devices that are controlled by the master are referred to as
slaves. The bus must be controlled by a master device that generates the serial clock (SCL), controls the
bus access, and generates the START and STOP conditions. The DS1307 operates as a slave on the 2-
wire bus. A typical bus configuration using this 2-wire protocol is show in Figure 4.

TYPICAL 2-WIRE BUS CONFIGURATION Figure 4

Figures 5, 6, and 7 detail how data is transferred on the 2-wire bus.

� Data transfer may be initiated only when the bus is not busy.
� During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in

the data line while the clock line is high will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus not busy: Both data and clock lines remain HIGH.

Start data transfer: A change in the state of the data line, from HIGH to LOW, while the clock is HIGH,
defines a START condition.

Stop data transfer: A change in the state of the data line, from LOW to HIGH, while the clock line is
HIGH, defines the STOP condition.

Data valid: The state of the data line represents valid data when, after a START condition, the data line
is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed
during the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The
number of data bytes transferred between START and STOP conditions is not limited, and is determined
by the master device. The information is transferred byte-wise and each receiver acknowledges with a
ninth bit. Within the 2-wire bus specifications a regular mode (100kHz clock rate) and a fast mode
(400kHz clock rate) are defined. The DS1307 operates in the regular mode (100kHz) only.

http://digilib.mercubuana.ac.id/

DS1307

7 of 12

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the
reception of each byte. The master device must generate an extra clock pulse which is associated with
this acknowledge bit.

A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of
course, setup and hold times must be taken into account. A master must signal an end of data to the slave
by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case,
the slave must leave the data line HIGH to enable the master to generate the STOP condition.

DATA TRANSFER ON 2-WIRE SERIAL BUS Figure 5

Depending upon the state of the R/ W bit, two types of data transfer are possible:

1. Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the
master is the slave address. Next follows a number of data bytes. The slave returns an acknowledge
bit after each received byte. Data is transferred with the most significant bit (MSB) first.

2. Data transfer from a slave transmitter to a master receiver. The first byte (the slave address) is
transmitted by the master. The slave then returns an acknowledge bit. This is followed by the slave
transmitting a number of data bytes. The master returns an acknowledge bit after all received bytes
other than the last byte. At the end of the last received byte, a “not acknowledge” is returned.

The master device generates all of the serial clock pulses and the START and STOP conditions. A
transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START
condition is also the beginning of the next serial transfer, the bus will not be released. Data is transferred
with the most significant bit (MSB) first.

http://digilib.mercubuana.ac.id/

DS1307

8 of 12

The DS1307 may operate in the following two modes:

1. Slave receiver mode (DS1307 write mode): Serial data and clock are received through SDA and
SCL. After each byte is received an acknowledge bit is transmitted. START and STOP conditions
are recognized as the beginning and end of a serial transfer. Address recognition is performed by
hardware after reception of the slave address and *direction bit (See Figure 6). The address byte is
the first byte received after the start condition is generated by the master. The address byte contains
the 7 bit DS1307 address, which is 1101000, followed by the *direction bit (R/ W) which, for a write,
is a 0. After receiving and decoding the address byte the device outputs an acknowledge on the SDA
line. After the DS1307 acknowledges the slave address + write bit, the master transmits a register
address to the DS1307 This will set the register pointer on the DS1307. The master will then begin
transmitting each byte of data with the DS1307 acknowledging each byte received. The master will
generate a stop condition to terminate the data write.

DATA WRITE – SLAVE RECEIVER MODE Figure 6

2. Slave transmitter mode (DS1307 read mode): The first byte is received and handled as in the slave
receiver mode. However, in this mode, the *direction bit will indicate that the transfer direction is
reversed. Serial data is transmitted on SDA by the DS1307 while the serial clock is input on SCL.
START and STOP conditions are recognized as the beginning and end of a serial transfer (See
Figure 7). The address byte is the first byte received after the start condition is generated by the
master. The address byte contains the 7-bit DS1307 address, which is 1101000, followed by the
*direction bit (R/ W) which, for a read, is a 1. After receiving and decoding the address byte the
device inputs an acknowledge on the SDA line. The DS1307 then begins to transmit data starting
with the register address pointed to by the register pointer. If the register pointer is not written to
before the initiation of a read mode the first address that is read is the last one stored in the register
pointer. The DS1307 must receive a “not acknowledge” to end a read.

DATA READ – SLAVE TRANSMITTER MODE Figure 7

http://digilib.mercubuana.ac.id/

DS1307

9 of 12

ABSOLUTE MAXIMUM RATINGS*
Voltage on Any Pin Relative to Ground -0.5V to +7.0V
Storage Temperature -55°C to +125°C
Soldering Temperature 260°C for 10 seconds DIP

See JPC/JEDEC Standard J-STD-020A for
Surface Mount Devices

* This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operation sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods of time may affect reliability.

Range Temperature VCC
Commercial 0°C to +70°C 4.5V to 5.5V VCC1

Industrial -40°C to +85°C 4.5V to 5.5V VCC1

RECOMMENDED DC OPERATING CONDITIONS
(Over the operating range*)

PARAMETER SYMBOL MIN TYP MAX UNITS NOTES
Supply Voltage VCC 4.5 5.0 5.5 V
Logic 1 VIH 2.2 VCC + 0.3 V
Logic 0 VIL -0.5 +0.8 V
VBAT Battery Voltage VBAT 2.0 3.5 V

*Unless otherwise specified.

DC ELECTRICAL CHARACTERISTICS
(Over the operating range*)

PARAMETER SYMBOL MIN TYP MAX UNITS NOTES
Input Leakage (SCL) ILI 1 �A
I/O Leakage (SDA &
SQW/OUT)

ILO 1 �A

Logic 0 Output (IOL = 5mA) VOL 0.4 V
Active Supply Current ICCA 1.5 mA 7
Standby Current ICCS 200 �A 1
Battery Current (OSC ON);
SQW/OUT OFF

IBAT1 300 500 nA 2

Battery Current (OSC ON);
SQW/OUT ON (32kHz)

IBAT2 480 800 nA

Power-Fail Voltage VPF 1.216 x VBAT 1.25 x VBAT 1.284 x VBAT V 8
*Unless otherwise specified.

http://digilib.mercubuana.ac.id/

DS1307

10 of 12

AC ELECTRICAL CHARACTERISTICS
(Over the operating range*)

PARAMETER SYMBOL MIN TYP MAX UNITS NOTES
SCL Clock Frequency fSCL 0 100 kHz
Bus Free Time Between a STOP and
START Condition

tBUF 4.7 �s

Hold Time (Repeated) START Condition tHD:STA 4.0 �s 3
LOW Period of SCL Clock tLOW 4.7 �s
HIGH Period of SCL Clock tHIGH 4.0 �s
Set-up Time for a Repeated START
Condition

tSU:STA 4.7 �s

Data Hold Time tHD:DAT 0 �s 4,5
Data Set-up Time tSU:DAT 250 ns
Rise Time of Both SDA and SCL Signals tR 1000 ns
Fall Time of Both SDA and SCL Signals tF 300 ns
Set-up Time for STOP Condition tSU:STO 4.7 �s
Capacitive Load for each Bus Line CB 400 pF 6

I/O Capacitance (TA = 25ºC)
CI/O 10 pF

Crystal Specified Load Capacitance
(TA = 25ºC)

12.5 pF

*Unless otherwise specified.

NOTES:
1. ICCS specified with VCC = 5.0V and SDA, SCL = 5.0V.
2. VCC = 0V, VBAT = 3V.
3. After this period, the first clock pulse is generated.
4. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the

VIHMIN of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.
5. The maximum tHD:DAT has only to be met if the device does not stretch the LOW period (tLOW) of the

SCL signal.
6. CB – Total capacitance of one bus line in pF.
7. ICCA – SCL clocking at max frequency = 100kHz.
8. VPF measured at VBAT = 3.0V.

http://digilib.mercubuana.ac.id/

DS1307

11 of 12

TIMING DIAGRAM Figure 8

DS1307 64 X 8 SERIAL REAL-TIME CLOCK
8-PIN DIP MECHANICAL DIMENSIONS

PKG 8-PIN
DIM MIN MAX

A IN.
MM

0.360
9.14

0.400
10.16

B IN.
MM

0.240
6.10

0.260
6.60

C IN.
MM

0.120
3.05

0.140
3.56

D IN.
MM

0.300
7.62

0.325
8.26

E IN.
MM

0.015
0.38

0.040
1.02

F IN.
MM

0.120
3.04

0.140
3.56

G IN.
MM

0.090
2.29

0.110
2.79

H IN.
MM

0.320
8.13

0.370
9.40

J IN.
MM

0.008
0.20

0.012
0.30

K IN.
MM

0.015
0.38

0.021
0.53

http://digilib.mercubuana.ac.id/

DS1307

12 of 12

DS1307Z 64 X 8 SERIAL REAL-TIME CLOCK
8-PIN SOIC (150-MIL) MECHANICAL DIMENSIONS

PKG 8-PIN
(150 MIL)

DIM MIN MAX
A IN.
MM

0.188
4.78

0.196
4.98

B IN.
MM

0.150
3.81

0.158
4.01

C IN.
MM

0.048
1.22

0.062
1.57

E IN.
MM

0.004
0.10

0.010
0.25

F IN.
MM

0.053
1.35

0.069
1.75

G IN.
MM

0.050 BSC
1.27 BSC

H IN.
MM

0.230
5.84

0.244
6.20

J IN.
MM

0.007
0.18

0.011
0.28

K IN.
MM

0.012
0.30

0.020
0.51

L IN.
MM

0.016
0.41

0.050
1.27

phi 0� 8�

56-G2008-001

http://digilib.mercubuana.ac.id/

Version：1005

All specifications are subject to change without prior notice.

SIM800C-DS is a complete Quad-band GSM/GPRS solution with LCC and LGA pads, support Dual-SIM, which allows

customers to use two SIM cards in one device simultaneously.

SIM800C-DS supports Quad-band 850/900/1800/1900MHz, it can transmit Voice, SMS and data information with low

power consumption. With tiny size of 17.6*15.7*2.3mm, it can smoothly fit into slim and compact demands of customer

design.

General features

•Quad-band 850/900/1800/1900MHz

•GPRS multi-slot class 12/10

•GPRS mobile station class B

•Compliant to GSM phase 2/2+

–Class 4 (2 W @ 850/900MHz)

–Class 1 (1 W @ 1800/1900MHz)

•Dimensions: 17.6*15.7*2.3mm

•Weight: 1.3g

•Control via AT commands (3GPP TS 27.007, 27.005
and SIMCom enhanced AT Commands)

•Supply voltage range 3.4 ~ 4.4V

•Low power consumption
•Operation temperature:-40℃ ~85℃

Specifications for GPRS Data

•GPRS class 12: max. 85.6 kbps (downlink/uplink)

•PBCCH support

•Coding schemes CS 1, 2, 3, 4

•PPP-stack

•USSD

Specifications for SMS via GSM/GPRS
•Point to point MO and MT
•SMS cell broadcast
•Text and PDU mode

Software features

•0710 MUX protocol

•Embedded TCP/UDP protocol

•FTP/HTTP

•MMS

•POP3/SMTP

•DTMF

•Jamming Detection

•Audio Record

•SSL

•Bluetooth 3.0 (optional)

•EAT (optional)

•TTS_CN (optional)

Specifications for voice

•Tricodec

–Half rate (HR)

–Full rate (FR)
–Enhanced Full rate (EFR)

•AMR

–Half rate (HR)

–Full rate (FR)

•Hands-free operation (Echo suppression)

Interfaces
77 SMT pins including
•SIM Card Interfaces (Dual Standby)
---SIM card 1: 3V/ 1.8V
---SIM card 2: 3V/ 1.8V

•Analog audio interface

•RTC backup

•I2C interface

•USB interface

•Serial interface

•PCM

•SD

•GPIO

•ADC

•GSM Antenna pad

•Bluetooth Antenna pad

Compatibility

•AT cellular command interface

SIM800C-DS

Smart Machine Smart DecisionSmart Machine Smart Decision

More about SIMCom SIM800C-DS
Please contact:
Tel: 86-21-32523300
Fax: 86-21-32523301
Email: simcom@sim.com
Website: www.sim.com/wm

http://digilib.mercubuana.ac.id/

