PENGARUH PERUBAHAN DIAMETER PITCH TURBIN HYDROCOIL TERHADAP POTENSI TERJADINYA KAVITASI MENGGUNAKAN CFD (COMPUTIONAL FLUID DYNAMIC)

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA JAKARTA 2018

LAPORAN TUGAS AKHIR

PENGARUH PERUBAHAN DIAMETER PITCH TURBIN HYDROCOIL TERHADAP POTENSI KAVIATSI MENGGUNAKAN CFD (COMPUTIONAL FLUID DYNAMIC)

Nama : Imam Syarifudin

NIM : 41313110068 A

DIAJUKAN UNTUK MEMENUHI SYARAT KELULUSAN MATA KULIAH TUGAS AKHIR PADA PROGRAM SARJANA STRATA 1 JANUARI 2018

LEMBAR PERNYATAAN

Yang bertanda tangan dibawah ini

Nama

: Imam Syarifudin

N.I.M

: 41313110068

Jurusan

: Teknik Mesin

Fakultas

: Teknik

Judul Skripsi

: Pengaruh Perubahan Diameter Pitch Turbin Hydrocoil Terhadap

Potensi Terjadinya Kavitasi Menggunakan CFD (Computiona Fluid

Dynamic)

Dengan ini menyatakan bahwa hasil penulisan Laporan Tugas Akhir yang telah saya buat ini merupakan hasil karya sendiri dan benar keasliannya. Apabila ternyata dikemudian hari penulisan laporan Tugas Akhir ini merupakan plagiat atau penjiplakan terhadap karya orang lain, maka saya bersedia mempertanggung jawabkan sekaligus bersedia menerima sanksi aturan Universitas Mercu Buana.

Demikian,pernyataan ini saya buat dalam keadaan sadar dan tidak ada paksaan

UNIVERSITAS

Jakarta, 24 Januari 2018

MERCU BUANA

Imam dvarifiidin)

LEMBAR PENGESAHAN

Pengaruh Perubahan Diameter Pitch Turbin Hydrocoil Terhadap Potensi Terjadinya Kavitasi Menggunakan CFD (Computional Fluid Dynamic)

ama : Imam Syarifudin

IM : 41313110068

Program Studi: Teknik Mesin

Mengetahui,

Dosen Rembimbing

(Alief Avicenna Luthfie, S.T., M.Eng)

Koordinator & Tugas Akhir

(Haris Wahyudi, S.T., M.Sc)

KATA PENGANTAR

Segala puji dan syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan nikmat dan karunia-Nya, sehingga laporan tugas akhir ini yang berjudul Pengaruh Perubahan Pitch Diameter pada Turbin *Hydrocoil* terhadap potensi Terjadinya Kavitasi menggunakan Metode *Computational Fluid Dynamics* dapat terselesaikan. Sholawat serta salam semoga tetap tercurahkan kepada Nabi Muhammad SAW.

Pada laporan tugas akhir ini penulis mengangkat tema tentang energi terbarukan yang telah menjadi topik utama dalam upaya mencari energi alternatif yang ramah lingkungan dalam proses pembangkitan listrik. Banyak ilmu yang telah penulis dapatkan selama proses penyusunan laporan tugas akhir ini, terutama ilmu mengenai turbin air. Selain itu, penulis juga mendapatkan banyak ilmu mengenai analisa fluida menggunakan metode Computational Fluid Dynamics (CFD) terutama yang berkaitan dengan perangkat lunak ANSYS CFX 15.0. Penulis berharap ilmu yang penulis dapatkan selama penyusunan tugas akhir ini dapat berguna bagi masyarakat.

Tentu masih banyak kekurangan dalam penyusunan laporan tugas akhir ini. Walaupun demikian, penulis telah berusaha yang terbaik dan tentunya dengan bantuan dari banyak pihak. Oleh karenanya, penulis perlu mengucapkan rasa terima kasih dengan hati yang tulus kepada pihak – pihak yang telah membantu penulis dalam peyunusan laporan tugas akhir ini, diantara adalah:

- 1. Allah SWT yang telah melimpahkan rahmat, nikmat dan karunia-Nya kepada penulis sehingga dapat menyelesaikan laporan tugas akhir ini.
- 2. Nabi Muhammad SAW yang telah menjadi teladan yang baik bagi umat manusia.
- 3. Bapak Sagir Alva, S.Sc., M.Sc., Ph.D, selaku Ketua Program Studi Teknik Mesin Fakultas Teknik Universitas Mercu Buana.
- 4. Bapak Haris Wahyudi, S.T., M.Sc., selaku Sekretaris Program Studi Teknik Mesin Fakultas Teknik Universitas Mercu Buana.

- 5. Bapak Alief Avicenna Luthfie, S.T., M.Eng, selaku pembimbing tugas akhir yang telah mengarahkan dan memberikan saran selama proses penyelesaian tugas akhir.
- 6. Para dosen Program Studi Teknik Mesin Fakultas Teknik Universitas Mercu Buana yang telah memberikan bekal ilmu serta wawasan mengenai keteknikmesinan kepada penulis.
- 7. Kedua orang tua penulis, yang telah meberikan kasih sayang, do'a yang tulus, perhatian, nasihat, pengorbanan, motivasi dan kesabaran yang tidak ada putus putusnya kepada penulis.
- 8. Adik penulis, Nur Priyatin dan M. Ade Lucky Saputra dan kakak kakak penulis yang selalu memberi semangat dan motivasi bagi penulis dalam menyelesaikan tugas akhir ini.
- A Dimas, Mas Ricco, Mas Inggit, Mas Plank, Mas Rendy, Mas Uti. Mas Putro dan rekan - rekan kost - kostan teratai 75 yang sudah seperti keluarga sejak SMK.
- 10. Rekan rekan S1 Teknik Mesin yang tidak bisa disebut satu persatu dan rekan rekan satu tim dalam project penyelesaian tugas akhir yang telah memberikan semangat kepada penulis didalam proses penyelesaian laporan tugas akhir.

Akhir kata penulis berharap agar laporan tugas akhir ini dapat bermanfaat bagi pembaca serta dapat menjadi referensi mengenai Turbin *Hydrocoil* sebagai alat dalam pemanfaatan energi air sebagai sumber energi listrik.

MERCU BUANA

Jakarta, 24 Januari 2018

Imam Syarifudin

DAFTAR ISI

A DEPOSIT OF THE PROPERTY OF T

		Halaman
LEMBAR I	PERNYATAAN	i
LEMBAR PENGESAHAAN		ii
PENGHARGAAN		iii
ABSTRAK		v
DAFTAR I	SI	vi
DAFTAR O	GAMBAR	viii
DAFTAR T	TABEL	xi
BAB I	PENDAHULUAN	
1.1	Latar Belakang	1
1.2	Rumusan Masalah	4
1.3	Batasan Masalah	4
1.4	Tujuan Penelitian	5
1.5	Manfaat Penelitian	5
1.6	Sistematika Penulisan	5
	UNIVERSITAS	
BAB II	TINJAUAN PUSTAKA	
2.1	Pembangkit Listrik Tenaga Mikrohido (PLTMH)	6
2.2	Parameter – parameter Pipa penstock	10
2.3	Turbin Air	14 15
	2.3.1 Turbin Impuls	15
	2.3.2 Turbin Reaksi	15
	2.3.3 Turbin Pelton	16
	2.3.4 Turbin Kaplan	16
	2.3.5 Turbin Francis	16
2.4	Turbin Hydrocoil	19
2.5	Kavitasi	21
2.6	CFD (Computational Fluid Dynamics)	

BAB III	METODOLOGI PENELITIAN	
3.1	Alat Bantu Penelitian	26
3.2	Alat dan Bahan Penelitian	26
3.3	Diagram Alir Penelitian	27
3.4	Prosedur Penelitian	28
	3.4.1 Prosedur Penelitian Tahap Desain	28
	3.4.2 Prosedur Penelitian Tahap Simulasi CFD	30
BAB IV	HASIL PENELITIAN DAN PEMBAHASAN	
4.1	Desain Pipa Penstock	33
4.2	Hasil Simulasi Turbin Hydrocoil pada Pipa Penstock	38
4.3	Perbandingan Thoma Number di Ketiga Variasi	53
4.4	Perbandingan Volume Vapour Fraction di Ketiga Variasi	61
BAB V	KESIMPULAN DAN SARAN	
5.1	Kesimpulan	67
5.2	Saran	68
DAFTAR P	USTAKA VERSITAS VERCUBLIANA	69

DAFTAR GAMBAR

No. G	ambar	Halaman
2.1	Gambar Berbagai macam nilai K _L	13
2.2	Gambar skematis turbin hydrocoil	16
2.3	Dimensi D _{cb} , Y dan D _w	17
2.4	Turbin Hydrocoil	18
2.5	Grafik Torsi dan Laju Alir Massa terhadap Kecepatan Putar Turbin	18
2.6	Grafik Daya Keluaran Turbin Hydrocoil terhadap Kecepatan Putar	18
2.7	Grafik Daya Keluaran Turbin Hydrocoil terhadap Kecepatan Putar	15
3.1	Diagram Alir Penelitian	27
3.2	Desain skematik penelitian	28
3.3	Desain turbin hydrocoil variasi 1	29
3.4	Desain turbin hydrocoil variasi 2	29
3.5	Desain turbin hydrocoil variasi 3	29
3.6	Ilustrasi pendefinisian Daerah Rotation Region	30
3.7	Ilustrasi Proses Meshing BUANA	31
4.1	Hasil Proses Boolean-Substract Turbin Hydrocoil dan Pipa Penstpc	k 38
12	Hasil Tahap Mesh Turbin Hydrocoil dan Pipa Penstock	39

4.3	Interface yang dibuat pada tahap Set Up	40
4.4	Contour Kecepatan Air pada Variasi 1 dengan Kecepatan Putar Turbin	41
	Sebesar 200 Rpm	
4.5	Contour Kecepatan Air pada Variasi 1 dengan Kecepatan Putar Turbin	45
	Sebesar 400 Rpm	
4.6	Contour Kecepatan Air pada Variasi 1 dengan Kecepatan Putar Turbin Sebes	ar
	600 rpm	42
4.7	Contour Kecepatan Air pada Variasi 1 dengan Kecepatan Putar Turbin Sebes	ar
	800 rpm	43
4.8	Contour Kecepatan Air pada Variasi 2 dengan Kecepatan Putar Turbin Sebes	sar
		43
4.9	Contour Kecepatan Air pada Variasi 2 dengan Kecepatan Putar Turbin Sebes	sar
7.7		44
4.10	Contour Kecepatan Air pada Variasi 2 dengan Kecepatan Putar Turbin Sebes	sar
		44
4.11	Contour Kecepatan Air pada Variasi 2 dengan Kecepatan Putar Turbin Sebes	sar
	800 rpm	45
4.12	Contour Kecepatan Air pada Variasi 3 dengan Kecepatan Putar Turbin Sebes	
	200 rpm	45 sar
4.13	Contour Kecepatan Air pada Variasi 3 dengan Kecepatan Putar Turbin Sebe	46
	400 rpm	
4.14	Contour Kecepatan Air pada Variasi 3 dengan Kecepatan Putar Turbin Sebe	46
	600 rpm	
4. 15	Contour Kecepatan Air pada Variasi 3 dengan Kecepatan Putar Turbin Sebe	47
	800 rpm	
4.16	Contour Absolute Pressure pada Variasi 1 dengan Kecepatan Putar Turbin	47
	Sebesar 200 rpm	
4.17	Contour Absolute Pressure pada Variasi 1 dengan Kecepatan Putar Turbin	48
	Sebesar 400 rpm	

4.18	Contour Absolute Pressure pada Variasi 1 dengan Kecepatan Putar Turbin	
	Sebesar 600 rpm	48
4.19	Contour Absolute Pressure pada Variasi 1 dengan Kecepatan Putar Turbin	
	Sebesar 800 rpm	49
4.20	Contour Absolute Pressure pada Variasi 2 dengan Kecepatan Putar Turbin	
	Sebesar 200 rpm	49
4.21	Contour Absolute Pressure pada Variasi 2 dengan Kecepatan Putar Turbin	
	Sebesar 400 rpm	50
4.22	Contour Absolute Pressure pada Variasi 2 dengan Kecepatan Putar Turbin	
	Sebesar 600 rpm	50
1.23	Contour Absolute Pressure pada Variasi 2 dengan Kecepatan Putar Turbin	
	Sebesar 800 rpm	51
1.24	Contour Absolute Pressure pada Variasi 3 dengan Kecepatan Putar Turbin	
	Sebesar 200 rpm	51
4.25	Contour Absolute Pressure pada Variasi 3 dengan Kecepatan Putar Turbin	
	Sebesar 400 rpm	52
4.26	Contour Absolute Pressure pada Variasi 3 dengan Kecepatan Putar Turbin	
	Sebesar 600 rpm	52
4.27	Contour Absolute Pressure pada Variasi 3 dengan Kecepatan Putar Turbin	
	Sebesar 800 rpm	53
4.28	Contour Thoma Number pada Variasi 1 dengan Kecepatan Putar Turbin	<i>-</i> 1
	Sebesar 200 rpm B A A	54
4.29	Contour Thoma Number pada Variasi 1 dengan Kecepatan Putar Turbin	<i>5 A</i>
	Sebesar 400 rpm	54
4.30	Contour Thoma Number pada Variasi 1 dengan Kecepatan Putar Turbin	<i>E E</i>
	Sebesar 600 rpm	55
4.31	Contour Thoma Number pada Variasi 1 dengan Kecepatan Putar Turbin	55
	Sebesar 800 rpm	33
4.32	Contour Thoma Number pada Variasi 2 dengan Kecepatan Putar Turbin	56
	Sebesar 200 rpm	50
4.33	Contour Thoma Number pada Variasi 2 dengan Kecepatan Putar Turbin	
	Sehesar 400 rpm	

4.34	Contour Thoma Number pada Variasi 2 dengan Kecepatan Putar Turbin	
	Sebesar 600 rpm	57
4.35	Contour Thoma Number pada Variasi 2 dengan Kecepatan Putar Turbin	
	Sebesar 800 rpm	57
4.36	Contour Thoma Number pada Variasi 3 dengan Kecepatan Putar Turbin	
	Sebesar 200 rpm	58
4.37	Contour Thoma Number pada Variasi 3 dengan Kecepatan Putar Turbin Sebe	esar
	400 rpm	58
4.38	Contour Thoma Number pada Variasi 3 dengan Kecepatan Putar Turbin	
	Sebesar 600 rpm	58
4.39	Contour Thoma Number pada Variasi 3 dengan Kecepatan Putar Turbin	
	Sebesar 800 rpm	59
4.40	Grafik Thoma Number pada kettiga Variasi	
4.41	Contour Kavitasi pada Variasi 1 dengan Kecepatan Putar Turbin Sebesar	
	200 rpm	61
4.42	Contour Kavitasi pada Variasi 1 dengan Kecepatan Putar Turbin Sebesar	
	400 rpm	62
4.43	Contour Kavitasi pada Variasi 1 dengan Kecepatan Putar Turbin Sebesar	
	600 rpm	62
4.44	Contour Kavitasi pada Variasi 1 dengan Kecepatan Putar Turbin Sebesar	
	800 rpm	63
4.45	Contour Kavitasi pada Variasi 2 dengan Kecepatan Putar Turbin Sebesar	
	200 rpm	63
4.45	Contour Kavitasi pada Variasi 2 dengan Kecepatan Putar Turbin Sebesar	
	400 rpm	64
4.46	Contour Kavitasi pada Variasi 2 dengan Kecepatan Putar Turbin Sebesar	- 4
	600 rpm	64
4.47	Contour Kavitasi pada Variasi 2 dengan Kecepatan Putar Turbin Sebesar	
	800 rpm	65

4.46	Contour Kavitasi pada Variasi 3 dengan Kecepatan Putar Turbin Sebesar	
	200 rpm	65
4.46	Contour Kavitasi pada Variasi 3 dengan Kecepatan Putar Turbin Sebesar	
	400 rpm	66
4.47	Contour Kavitasi pada Variasi 3 dengan Kecepatan Putar Turbin Sebesar	
	600 rpm	66
4.48	Contour Kavitasi pada Variasi 3 dengan Kecepatan Putar Turbin Sebesar	
	800 rpm	67

DAFTAR TABEL

No. Tabel		Halamar	
1.1	Potensi Energi Non Fosil di Indonesia	2	
2.1	Klasifikasi Sistem Pembangkit Listrik Tenaga Air	7	
2.2	Nilai Roughness (ε)	20	
3.1	Parameter Turbin Hydrocoil	31	
4.1	Nilai Informasi Nilai Debit Optimum dari Ketiga variasi	40	
4.2	Nilai Thoma dari Ketiga Variasi	59	
4.3	Fluid Velocity dari Ketiga Variasi	6	
4.4	Absolute Pressure dari Ketiga Variasi	51	
4.5	Nilai Thoma dari Ketiga Variasi	59	
4.6	Volume Fraction Vapour dari Ketiga Variasi	66	

