PEMBUATAN KATODA UDARA DENGAN BATANG GRAFIT BATERAI BEKAS

Yayasan Menara Bhakti UNIVERSITAS MERCU BUANA Perpustakaan Pusat

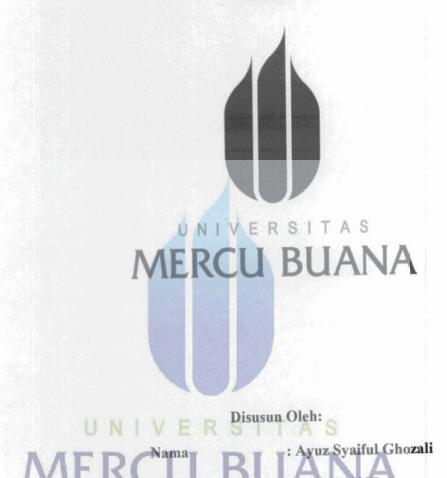
Sumber: Sumbangan Tanggal: 19 MAR 2018

Tanggal: 19 1942 20 No. Reg.: 1, 5 1718 0401

2 ST/13/18/04S

MERCU BUANA

AYUZ SYAIFUL GHOZALI


NIM: 41313010027

MERCU BUANA

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA JAKARTA 2017

LAPORAN TUGAS AKHIR

PEMBUATAN KATODA UDARA DENGAN BATANG GRAFIT BATERAI BEKAS

Program Studi : Teknik Mesin

DIAJUKAN UNTUK MEMENUHI SYARAT KELULUSAN MATA KULIAH TUGAS AKHIR PADA PROGRAM SARJANA STRATA SATU (S1) **JANUARI 2018**

LEMBAR PERNYATAAN

Yang bertanda tangan dibawah ini,

Nama

: Ayuz Syaiful Ghozali

NIM

: 41313010027

Jurusan

: Teknik mesin

Fakultas

: Teknik

Judul Skripsi

: Pembuatan Katoda Udara Dengan Batang Grafit Baterai Bekas

Dengan ini menyatakan bahwa hasil penulisan Laporan Tugas Akhir yang telah saya buat ini merupakan hasil karya sendiri dan benar keasliannya. Apabila ternyata di kemudian hari penulisan Laporan Tugas Akhir ini merupakan hasil plagiat atau penjiplakan terhadap karya orang lain, maka saya bersedia mempertanggung jawabkan sekaligus bersedia menerima sanksi berdasarkan aturan di Universitas Mercu Buana.

Demikian, pernyataan ini saya buat dalam keadaan sadar dan tidak ada paksaan.

Jakarta, Januari 2018 Penulis,

UNIVERSITAS

MERCU BUANA

(Ayuz Syaiful Ghozali)

LEMBAR PENGESAHAN

Pembuatan Katoda Udara Dengan Batang Grafit Baterail Bekas

Disusun Oleh:

Nama

: Ayuz Syaiful Ghozali

U NNIM/ E R S | :4131

: 41313010027

Frogram Studi B: Teknik Mesin

Mengetahui,

Dosen Pembimbing

(Sagir Alva, S.Si, M,SC, Ph.D)

Koordinator Tugas Akhir

(Haris Wahyudi, ST, M.Sc)

PENGHARGAAN

Puji dan syukur penulis panjatkan kepada Allah SWT karena atas berkat dan rahmat-Nya, Sehingga penulis dapat menyelesaikan laporan Tugas Akhir yang berjudul Pembuatan Katoda Udara Dengan Batang Grafit Baterai Bekas.

Penulisan ini disusun untuk dapat memenuhi salah satu persyaratan kurikulum sarjana strata satu (S1) di Fakultas Teknik Jurusan Teknik Mesin Universitas Mercu Buana.

Dalam proses pelaksanaan Tugas Akhir ini, penulis telah mendapatkan banyak bimbingan, saran dan dukungan dari banyak pihak. Oleh karena itu, penulis ingin mengucapkan terima kasih kepada:

- Allah SWT, karena atas rahmat dan hidayah-Nya penulis dapat menyelesaikan penulisan laporan Tugas Akhir dengan baik
- 2. Bapak Dr. Ir. Arissetyanto Nugroho, MM. selaku Rektor Universitas Mercu Buana
- 3. Bapak Prof. Dr. Ir. Chandrasa Soekardi, selaku Dekan Fakultas Teknik Mesin Mercu Buana
- Bapak Hadi Pranoto ST, MT. selaku Ketua Program Studi Teknik Mesin Universitas Mercu Buana
- Bapak Sagir Alva S. Sci, M. Sc, Ph.D sebagai dosen pembimbing yang telah membimbing saya dengan sabar dan baik selama penelitian dan penulisan laporan Tugas Akhir ini
 - Bapak Haris Wahyudi ST, M.Sc sebagai koordinator Tugas Akhir yang telah membimbing dan memberikan saran-saran kepada penulis dalam pembuatan sistematika penulisan laporan Tugas Akhir
 - Kedua Orang tua saya yang selalu memberikan dukungan moril dan materil, serta do'a yang baik agar penulis dapat menyelesaikan laporan Tugas Akhir ini.
 - Renanda, Digo, Panji dan Todo selaku teman di laboratorium Mercu Buana yang saling membantu

- Teman-teman Teknik Mesin 2013 yang ikut memberikan dukungan dalam pembuatan laporan Tugas Akhir ini.
- Semua pihak yang telah membantu penulis menyelesaikan skripsi ini, yang tidak dapat disebutkan satu per satu.

Kiranya Allah SWT yang akan membalas kan semua kebaikan yang telah diterima oleh penulis. Penulis menyadari bahwa laporan ini masih dapat dikembangkan lebih jauh lagi, maka dengan segala kerendahan hati kepada semua pihak untuk memberikan kritik dan saran demi adanya perbaikan atas isi dari laporan ini kedepannya namun penulis juga berharap bahwa laporan skripsi ini dapat memberikan manfaat, informasi dan pengetahuan bagi para pembaca.

Akhirnya kepada Allah SWT, penulis berserah diri, Semoga apa yang telah dilakukan ini mendapat berkah dan ridho-Nya, Amin.

Jakarta, Januari 2018

Penulis

UNIVERSITAS

MERCU BUANA (Ayuz Syaiful Ghozali)

DAFTAR ISI

LEMBA	R PERNYATAAN	1
LEMBA	R PENGESAHAN	ii
PENGH	ARGAAN	iii
ABSTRA	AK.	V
DAFTA	R ISI	vi
DAFTA	R GAMBAR	ix
DAFTA	R TABEL	x
BAB I	PENDAHULUAN	
1.1	Latar Belakang	1
1.2	Rumusan Masalah	3
1.3	Tujuan Penelitian	4
1.4	Batasan Masalah	4
1.5	Sistematika Penulisan	4
BAB I	I TINJAUAN PUSTAKA	
2.1	Pendahuluan	6
2.2	Baterai	6
2.3	Baterai Logam Udara	7
2.4	Komponen Baterai Logam Udara	8
	2.4.1 Anoda R S I T A S	8
	2.4.2 Elektrolit	9
M	E 2.4.3 Katoda B A A	10
2.5	Karbon	13
2.6	Karbon Aktif	14
2.7	Aktivasi Karbon Aktif	15
2.8	Penggunaan Karbon Aktif	16
2.9	Grafit	17
2.10	Katalis	19
2.11	Matriks Pengikat (Binder)	20

BAB	Ш	METO	DELOGI PENELITIAN	
3.1		Pendah	nuluan	22
3.2		Diagra	m Alir Penelitian	22
3.3		Tahapa	an Penelitian	23
		3.3.1	Mulai	23
		3.3.2	Studi Pustaka	23
		3.3.3	Persiapan Alat dan Bahan	23
		3.3.4	Aktivasi Batang Grafit Baterai Bekas	24
		3.3.5	Pengujian Kadar Air	26
		3.3.6	Pengujian Daya Serap Iodin	28
		3.3.7	Pengujian Methlene Blue	31
		3.3.8	Pembuatan Baterai Logam Udara	33
		3.3.9	Uji Fungsi	37
		3.3.10	Analisis Data	37
		3.3.11	Kesimpulan	37
		3.3.12	Selesai	37
BAB	IV	ANAI	LISIS DAN PEMBAHASAN	
4.1		Penda	huluan	38
4.2		Data I	Hasil Batang Grafit Baterai bekas Setelah Dilakukan	
		Aktiva	asi	38
4.3		Data I	Hasil Pengujian Kadar Air Arang Aktif Batang	
NA.	4	Grafit	Baterai Bekas	40
4.4	/IE	Data I	Hasil Pengujian Daya Serap Iodin Batang Grafit	
		Batera	ai Bekas	42
4.5		Data I	Pengujian Methylene Blue	44
4.6		Data l	Hasil Pengujian XRD	46
4.7		Data 1	Hasil Pengujian Tegangan dan Arus Listrik	
			ai Logam Udara	49
4.8		Data	Hasil Pengujian Arus Listrik Baterai Logam	
		Hdara	a Terhadap Waktu	51

BAB V	KESIMPULAN DAN SARAN	
5.1	Kesimpulan	54
5.2	Saran	55
	R PUSTAKA	56
LAMPII	RAN	
A	Rumus Aktivasi Batang Grafit Baterai Bekas	59
В	Rumus Pengujian Kadar Air	61
C	Rumus Penguijan Daya Seran Iodin	62

DAFTAR GAMBAR

No.	Gambar	Halaman
2.1	Karbon	13
2.2	Proses metamorfogenik batuan sedimen	
	organik coal menjadi graphite	17
2.3	Skematik Arabic gum mengikat partikel karbon	20
2.4	Grafik perbandingan tegangan yang dihasilkan	21
2.5	Grafik perbandingan arus listrik yang dihasilkan	21
3.1	Diagram alir penelitian	22
4.1	Serbuk batang grafit baterai bekas menempel pada kertas saring	42
4.2	Grafik pengujian kadar air batang grafit baterai bekas	43
4.3	Grafik pengujian daya serap iodin	45
4.4	Grafik pengujian methylene blue	47
4.5	Pengujian batang grafit baterai bekas XRD	49
4.6	Skema baterai logam udara	51
4.7	Logam anoda	53
4.8	Grafik pengujian arus baterai terhadap waktu	55
4.9	Perbedaan diameter lubang pada casing baterai logam udara	56

UNIVERSITAS

MERCU BUANA

DAFTAR TABEL

No.	Tabel	Halaman
2.1	Proses pembuatan katoda dengan variasi suhu pengeringan	11
2.2	Persyaratan mutu karbon aktif SNI 06-3730-1995	15
3.1	proses aktivasi batang grafit baterai bekas	25
3.2	proses pengujian kadar air	27
3.3	Tahapan pengujian daya serap iodin	28
3.4	proses pengujian Methlene Blue	32
3.5	Tahapan pembuatan baterai logam udara	35
4.1	Data pengujian kadar air batang grafit baterai bekas	43
4.2	Data pengujian daya serap iodin	45
4.3	Data pengujian methylene blue	46
4.4	Persyaratan karbon aktif (SNI No. 06-3703-1995)	48
4.5	Hasil pengujian XRD batang grafit sebelum aktivasi	50
4.6	Hasil pengujian XRD batang grafit sesudah aktivasi	50
4.7	Nilai rata-rata tegangan dan arus yang dihasilkan	52
4.8	Pengujian arus baterai terhadap waktu	54

MERCU BUANA