TUGAS AKHIR

PERANCANGAN ALAT PEMBUKA BALL BEARING MENGGUNAKAN HYDRAULIC JACK 4 TON DENGAN METODE VDI-2221

Disusun oleh:

NAMA: RINNO ANGGATHA

NIM : 41305120004

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA JAKARTA 2010

LEMBAR PENGESAHAN

TUGAS AKHIR

PERANCANGAN ALAT PEMBUKA *BALL BEARING* MENGGUNAKAN *HYDRAULIC JACK* 4 TON DENGAN METODE VDI-2221

Laporan Tugas Akhir ini Disusun Oleh:

NAMA : RINNO ANGGATHA

NIM : 41305120004

FAKULTAS : TEKNOLOGI INDUSTRI

PROGRAM STUDI : TEKNIK MESIN

Isi dan formatnya telah disetujui dan dinyatakan memenuhi syarat dalam menyelesaikan Tugas Akhir pada Program Studi Teknik Mesin Fakultas

Teknologi Industri Universitas Mercu Buana

Menyetujui:

Koordinator/Dosen Pembimbing Tugas Akhir

(Dr. Ir. H.Abdul Hamid, M.Eng)

LEMBAR PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama : RINNO ANGGATHA

NIM : 41305120004

Fakultas : Teknologi Industri

Program Studi : Teknik Mesin

Universitas : Mercubuana

Menyatakan dengan sesungguhnya, bahwa tugas akhir yang saya buat ini merupakan hasil karya sendiri dan bukan salinan atau duplikat dari hasil karya orang lain, kecuali pada bagian yang telah disebutkan sumbernya dalam daftar referensi.

Jakarta, Juli 2010

RINNO ANGGATHA

iii

KATA PENGANTAR

Assalammualaikum wr.wb.

Puji syukur kehadirat Allah SWT, yang senantiasa memberikan rahmat dan hidayah-Nya serta kesempatan yang baik dan kesehatan sehingga penulis dapat menyelesaikan "Perancangan Alat Pembuka *Ball Bearing* Menggunakan Hidrolik Jack 4 Ton Dengan Metode VDI-2221".

Penulis menyadari bahwa laporan tugas akhir ini masih jauh dari sempurna. Karena itu, segala saran dan kritik yang membangun akan senantiasa penulis terima dengan senang hati.

Dengan segala keterbatasan, penulis menyadari pula bahwa laporan tugas akhir ini tidak akan terwujud tanpa bantuan, bimbingan, dan dorongan dari berbagai pihak. Untuk itu, dengan segala kerendahan hati, penulis menyampaikan ucapan terima kasih kepada :

- Dr. Ir Abdul Hamid, M.Eng selaku pembimbing yang telah meluangkan waktu untuk membimbing dan mengarahkan penulis dalam menyusun tugas akhir ini.
- Ir. Nanang Ruhyat, MT selaku koordinator sidang sarjana jurusan Teknik Mesin Universitas Mercu Buana.
- 3. Bapak- bapak dosen Teknik Mesin Universitas Mercu Buana yang telah memberikan bimbingan dan pengajaran selama kuliah.
- 4. Bapak Kurniawan dan sahabat saya Agus Mulyono yang sudah banyak membantu dalam penulisan tugas akhir ini

5. Kepada orang tua dan semua keluarga yang tercinta atas segala limpahan

kasih sayang dan kepercayaan serta dukungan berupa moril maupun

materil dan do'a yang tulus yang tiada hentinya.

6. Seluruh rekan kerja di PT. Sun Motor yang telah memberikan pengertian

dan dukungan moral kepada penulis

7. Kawan-kawan Teknik Mesin PKK- angkatan 8 yang sudah banyak

memberi dukungan dan membantu dalam berbagai hal.

8. Semua pihak yang turut memantu secara langsung dan tidak langsung

yang tidak dapat di sebutkan satu persatu tanpa mengurangi besar rasa

terima kasih dan hormat saya

Akhirul kalam, semoga rancangan alat ini bisa bermanfaat bagi mahasiswa

Teknik Mesin dan dunia industri untuk pengembangan selanjutnya.

Jakarta, Juli 2010

Penyusun

Rinno Anggatha

V

ABSTRAK

PERANCANGAN ALAT PEMBUKA BALL BEARING MENGGUNAKAN HYDRAULIC JACK 4 TON DENGAN METODE VDI-2221

Hidrolik *Jack* merupakan alat yang dapat diaplikasikan luas diberbagai pekerjaan dan sistem hidrolik. Perancangan alat ini merupakan salah satu bentuk aplikasi dari hidrolik *jack* yang dapat digunakan secara maksimal dalam proses penekanan untuk membuka suatu *ball bearing* dari porosnya atau dari rumah *bearing*, dan secara umum dapat dipergunakan untuk berbagai keperluan penekanan lainnya.

Perancangan ini menggunakan metode VDI 2221, data-data serta daftar kehendak dari perancangan dikumpulkan dan dikelompokkan, baik yang bersumber dari percobaan dan lapangan serta pustaka. Setelah itu data-data tersebut dianalisa fungsi tiap bagian- bagian dan kemudian dicari prinsip solusinya. Kemudian dari prinsip solusi tersebut, diuraikan menjadi beberapa varian yang dapat direalisasikan, kemudian dipilih satu varian yang paling mendekati dengan tuntutan desain.

Hidrolik *Jack* dengan kombinasi Meja Penekan (Rig) ini memiliki spesifikasi gaya penekanan maksimal sebesar 43.000 N, dimana mampu melepaskan *ball bearing* dengan diameter dalam (*inner ring*) 50 mm dengan tekanan Kerja Silinder maksimum 210 Bar (21 MPa) dan panjang langkah penekanan maksimal 200 mm.

Kata Kunci: Hidrolik Jack, Pompa Hidrolik, Silinder Hidrolik, Meja Penekan (Rig)

DAFTAR ISI

I	Halaman
LEMBAR PENGESAHAN	ii
LEMBAR PERNYATAAN	iii
KATA PENGANTAR	iv
ABSTRAK	. v
DAFTAR ISI	vi
DAFTAR TABEL	ix
DAFTAR GAMBAR	x
DAFTAR NOTASI	xii
BAB I PENDAHULUAN	. 1
1.1. LATAR BELAKANG	. 1
1.2. TUJUAN	. 2
1.3. BATASAN MASALAH	. 3
1.4. METODOLOGI PEMECAHAN MASALAH	. 3
1.5. SISTEMATIKA PENULISAN	4
BAB II METODE PERANCANGAN SISTEMATIS	. 6
2.1. PENJABARAN TUGAS (CLARIFICATION OF TASK)	. 9
2.2. PERANCANGAN KONSEP	. 12
2.2.1. Abstraksi	. 13
2.2.2. Pembuatan Struktur Fungsi	. 13

2.2.3.	Pencarian dan Kombinasi Prinsip Solusi	15
2.2.4.	Pemilihan Kombinasi Yang Sesuai	16
2.2.5.	Pembuatan Varian Konsep	17
2.2.6.	Evaluasi	18
2.3. PERA	ANCANGAN WUJUD	19
2.4. PERA	ANCANGAN TERPERINCI	20
BAB III PERAN	ICANGAN ALAT PEMBUKA BALL BEARING	
MENG	GUNAKAN HIDROLIK JACK 4 TON DENGAN	
METO	DE VDI-2221	21
3.1. DAF	ΓAR KEHENDAK	21
3.2. SPES	IFIKASI HIDROLIK JACK 4 TON	22
3.3. STRU	JKTUR FUNGSI	24
3.3.1.	Fungsi Keseluruhan	24
3.3.2.	Struktur Fungsi	25
3.3.3.	Fungsi Komponen Utama	25
3.3.4.	Mencari dan memilih Prinsip Solusi untuk Setiap	
	Sub Fungsi Utama	32
3.3.5.	Memilih Variasi Kombinasi yang Terbaik	37
3.4. PERH	HITUNGAN BAGIAN KRITIS MEJA PENEKAN	72
3.4.1.	Baut-Baut Penahan Atas	72
3.4.2.	Balok Penahan Benda Kerja	74
3.4.3.	Rakitan Penahan Tengah	76
3 4 4	Pin Penahan Rakitan Tengah	80

BAB IV	KESIMPULAN DAN	SARAN	82
	5.1. KESIMPULAN		82
	5.2. SARAN		83
DAFTAR	PUSTAKA		84
LAMPIR	AN-LAMPIRAN		85

DAFTAR TABEL

Tabel	l Ha	ılamaı
2.1.	Daftar Pemeriksaan Untuk Pedoman Spesifikasi	11
3.1.	Daftar Spesifikasi Alat Pembuka Ball Bearing Menggunakan	
	Hidrolik Jack 4 Ton.	22
3.2.	Prinsip Solusi	33
3.3.	Tabel Pemilihan Variasi Struktur Fungsi	38
3.4.	Gambar Jalur Variasi Prinsip Solusi 1	41
3.5.	Gambar Jalur Variasi Prinsip Solusi 2	46
3.6.	Gambar Jalur Variasi Prinsip Solusi 3	51
3.7.	Gambar Jalur Variasi Prinsip Solusi 4.	56
3.8.	Gambar Jalur Variasi Prinsip Solusi 5.	61
3.9.	Hasil Evaluasi Varian 1	66
3.10.	Hasil Evaluasi Varian 2	67
3.11.	Hasil Evaluasi Varian 3	68
3.12.	Hasil Evaluasi Varian 4	69
3.13.	Hasil Evaluasi Varian 5	70
3.14.	Perbandingan Nilai Evaluasi Varian	71

DAFTAR GAMBAR

Gamb	oar .	Halaman
2.1.	Prosedur Pemecahan Masalah Secara Umum	. 7
2.2.	Skema Langkah Kerja	9
2.3.	Tahap-tahap Perancangan dengan Konsep	. 12
2.4.	Pembuatan Sub Fungsi	14
3.1.	Fungsi Alat Pelepas Ball Bearing dengan Hidrolik Jack 4 Ton	25
3.2.	Fungsi Bagian Pompa Hidrolik	26
3.3.	Fungsi Bagian Silinder Hidrolik	27
3.4.	Fungsi Bagian Rakitan Tiang	28
3.5.	Fungsi Bagian Rakitan Penahan Atas	28
3.6.	Fungsi Bagian Rakitan Penahan Tengah	29
3.7.	Fungsi Bagian Rakitan Kaki-Kaki Bawah	30
3.8.	Fungsi Bagian Pin Penahan	30
3.9.	Fungsi Bagian Alat Pengukur Tekanan Hidrolik	31
3.10.	Fungsi Bagian Selang dan Fitting Hidrolik	32
3.11.	Variasi Prinsip Solusi 1.	45
3.12.	Variasi Prinsip Solusi 2.	50
3.13.	Variasi Prinsip Solusi 3.	55
3.14.	Variasi Prinsip Solusi 4.	60
3.15.	Variasi Prinsip Solusi 5.	65
3.16.	Aliran Gaya Pada Meja Penekan	72.

3.17.	Baut Pada Penahan Atas	72
3.18.	Balok Penahan Benda Kerja	74
3.19.	Rakitan Penahan Tengah	76
3.20.	Pin Penahan	80

DAFTAR NOTASI

Simbol	Nama	Satuan
a	Percepatan Gravitasi	m/det ²
A	Luas Permukaan	m^2
b	Lebar	mm
d	Diameter	mm
d_{c}	diameter dalam ulir baut	mm
D	Jarak Perpindahan	cm
Е	Modulus Young	GPa
F	Gaya	N
h	Tinggi	mm
I	Momen Penampang	mm ⁴
ℓ	Panjang	mm
m	Massa Benda	kg
M	Momen	N-mm
p	Tekanan	Pa
R_A	Gaya Reaksi di titik A	N
R_{B}	Gaya Reaksi di titik B	N
t	Tebal	mm
Z	Section modulus	mm^3
σ_{t}	tensile strength	N/mm ²
σ_{y}	tensile yield	N/mm ²
$\sigma_{ m maks}$	Tegangan maksimal	N/mm ²
δ	Defleksi/lendutan	mm