TUGAS AKHIR

Aplikasi Metode Failure Mode And Effects Analysis (FMEA) Untuk pengendalian kualitas pada proses Heat Treatment PT. Mitsuba Indonesia

Diajukan Guna Melengkapi Sebagian Syarat Dalam Mencapai Gelar Sarjana Strata Satu (S1)

Disusun Oleh:

Nama : Lily Octavia NIM : 41606110045 Program Studi : Teknik Industri

PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS MERCU BUANA JAKARTA 2010

LEMBAR PERNYATAAN

Yang bertandatangan dibawah ini,

Nama : Lily Octavia

Nim : 41606110045

Jurusan : Teknik Industri

Falkutas : Teknologi Industri

Judul Skripsi : Aplikasi Metode Failure Mode And Effect Analysis

(FMEA) Untuk Pengendalian Kualitas Pada Proses Heat

Treatment PT.Mitsuba Indonesia

Dengan ini menyatakan bahwa hasil penulisan Skripsi yang telah saya buat ini merupakan hasil karya saya sendiri dan benar keasliannya. Apabila ternyata dikemudian hari penulis Skripsi ini merupakan hasil plagiat atau penjiplakan terhadap karya orang lain, maka saya bersedia mempertanggungjawabkan sekaligus bersedia menerima sanksi berdasarkan aturan tata tertib di Universitas Mercu Buana.

Demikian pernyataan ini saya buat dalam keadaan sadar dan tidak dipaksakan.

Penulis,

(Lily Octavia)

LEMBAR PENGESAHAN

Aplikasi Metode Failure Mode And Effects Analysis (FMEA) Untuk pengendalian kualitas pada proses Heat Treatment PT. Mitsuba Indonesia

Disusun Oleh:

Nama : Lily Octavia NIM : 41606110045 Program Studi : Teknik Industri

Mengetahui, Pembimbing

Koordinator TA/KaProdi

(Ir. Muhammad Kholil, MT.) (Ir. R Bagus Yosan, MT.)

Pengendalian kualitas proses painting untuk menurunkan repair cat kotor dengan menggunakan metode Quality Control Cycle (QCC) di PT.Pakoakuina.

Ir. R BAGUS YOSAN, MT / LILY OCAVIA
Teknik Industri
Universitas Mercu Buana Jakarta
E-mail: / lily octavia29@yahoo.co.id

ABSTRAKSI

PT. Mitsuba Indonesia merupakan pabrikan komponen kelistrikan pada sepeda motor, salah satu permasalahan yang ada pada perusahaan ini adalah pada produk rotor boss. Karena berdasar fungsi, part tersebut mensyaratkan kelenturan dan kekerasan tertentu, Proses heat treatment digunakan sebagai perlakukan khusus untuk mendapatkan karakteristik dari part tersebut, tingkat kelenturan dan kekerasan diatur sedemikian rupa dengan memberikan pengaturan pada suhu pemanasan dan pendinginan serta lama waktu proses.

Kegagalan produk yang sering muncul adalah kondisi *under hardness* dan *over hardness*, persentase part gagal pada 2009 menjadi 0.73% dari total produksi tahunan. *Failure Mode Effect Analysis (FMEA)* merupakan metode yang menjadi pilihan untuk mengurangi kegagalan produk tersebut dengan menitik beratkan pada penanggulangan faktor-faktor yang memiliki potensi menyebabkan kegagalan produk.

Kata Kunci: Failure Mode Effect Analysis, Heat treatment Fundamental, Quality

ABSTRACT

PT. Mitsuba Indonesia is manufacture of Automotive Electrical Component for Motor Cycle, this company has many variant of product one of them is rotor boss. Due this component function a particular condition of mechanical hardness is presupposed. Heat treatment process is used as special treatment for material to fulfill the special mechanical properties, to obtain mechanical pliability and hardness, some value of temperature is given for material heating also for the cooling condition processing time also a dominant factor.

Under hardness and Over Hardness is one kind of product defect that often appear, percentage of total product fail on 2009 is 0.73% from overall production. Failure Mode Effect Analysis (FMEA) is method that expected to decrease quantity overall product fail with center of pressure on overcoming factor that has potentially value to make product fail. As the result of this method percentage overall product fail on 2010 is down almost 50%, there for additional production cost for product repair can be fore.

Keywords : Failure Mode Effect Analysis, Heat treatment Fundamental, Quality Management

A. PENDAHULUAN

Banyak ahli yang mendefinisikan mutu dan pengertian kualitas, yang sebenarnya definisi atau pengertian yang satu hampir sama dengan definisi atau pengertian yang lain. Beberapa pengertian kualitas tersebut adalah:

Deming(1982) "kualitas harus bertujuan memenuhi kebutuhan pelanggan sekarang dan di masa mendatang."

Feigenbaum(1991) "kualitas merupakan keseluruhan karakteristik produk dan jasa yang meliputi *marketing, engineering, manufacture,* dan *maintenance,* dalam mana produk dan jasa tersebut dalam pemakaiannya akan sesuai dengan kebutuhan dan harapan pelanggan.

Sehingga kesimpulan dari pengertian kualitas tersebut adalah :

"Kepuasan konsumen dengan kesempurnaan produk merupakan sesuatu langkah yang tepat dalam proses produksi melalui peningkatan terus menerus secara bersama-sama"

FMEA (failure mode and effect analysis) adalah suatu prosedur terstruktur untuk mengidentifikasikan dan mencegah sebanyak mungkin mode kegagalan (failure mode). **FMEA** digunakan untuk mengidentifikasi sumber-sumber dan akar penyebab dari suatu masalah kualitas. Suatu mode kegagalan adalah apa saja yang termasuk kecacatan/kegagalan desain, kondisi diluar batas spesifikasi yang telah ditetapkan, atau perubahan produk yang menyebabkan terganggunya fungsi dari produk itu.

Para ahli memiliki beberapa definisi mengenai *failure modes and effect analysis*, definisi tersebut memiliki arti yang cukup luas dan apabila dievaluasi lebih dalam memiliki arti yang serupa. Definisi *failure modes and*

effect analysis tersebut disampaikan oleh .

- Menurut Roger D. Leitch, definisi dari failure modes and effect analysis adalah analisa teknik yang apabila dilakukan dengan tepat dan waktu yang tepat akan memberikan nilai vang besar dalam membantu proses pembuatan keputusan dari engineer selama perancangan pengembangan. Analisa tersebut bisa disebut analisa "bottom up", seperti dilakukan pemeriksaan proses pada produksi tingkat awal dan mempertimbangkan kegagalan sistem yang merupakan hasil dari keseluruhan bentuk kegagalan yang berbeda.
- Menurut John Moubray, definisi dari failure modes and effect analysis adalah metode yang digunakan untuk mengidentifikasi bentuk kegagalan yang mungkin menyebabkan setiap kegagalan fungsi dan untuk memastikan pengaruh kegagalan berhubungan dengan setiap bentuk kegagalan.

Filosofi dasar dari FMEA adalah: "cegah sebelum terjadi". FMEA baik sekali digunakan pada system manajemen mutu untuk jenis industri manapun. Standar ISO/TS-16949 (standar system manajemen untuk industri mutu automotive) mensyaratkan dilakukan FMEA pada saat perancangan produk maupun perancangan proses produksi. ISO-9001 tidak secara explicit mensyaratkan FMEA. dilakukannya Meski sekali bila begitu, baik perusahaan menerapkannya untuk memenuhi persyaratan tentang tindakan pencegahan.

Terdapat dua penggunaan FMEA yaitu dalam bidang desain (Desain FMEA) dan dalam proses (Proses FMEA). FMEA Desain akan membantu

1. Design FMEA (DFMEA)

Adalah suatu analisa teknik untuk memahami potential kegagalan pada design produk. Asumsi dibuat bahwa produksi sudah membuat produk sesuai design, akan tetapi produk masih tidak berfungsi atau tidak berfungsi optimal. Kegagalan pada design produk dapat berupa:

- Produk tidak berfungsi maksimal
- Produk tidak dapat bekerja pada kondisi tertentu
- Produk dibuat dengan tingkatan reject yang tinggi
- Produk sulit untuk dibuat atau diassembly (design for manufacturability and design assembly)

Design FMEA selain mempertimbangkan kegagalan pada produk, juga mempertimbangkan :

- Keterbatasan / kemampuan manufacturing dan assembly, seperti misalnya : keterbatasan ruang untuk melakukan assembly, keterbatasan / kemampuan mesin
- Keterbatasan / kemudahan servise dan recycle produk, misalnya: ruang untuk akses tooling untuk perbaikan. Kemampuan diagnostic, klasifikasi material (untuk kepuasan recycle).

2. Proses FMEA (PFMEA)

Adalah suatu analisa teknik untuk memahami potential kegagalan pada proses produksi. Asumsi dibuat bahwa design produk sudah baik akan tetapi proses produksi gagal memenuhi tuntutan atau persyaratan pada design. Misalnya:

- Diameter lubang kebesaran
- Pelapisan yang kurang
- Kekerasan material kurang, dll Definisi customer pada PFMEA pada umumnya adalah "Penggunaan akhir / end user". Customer dapat juga proses selanjutnya atau proses assembly, service, peraturan pemerintah.

PFMEA adalah living dokumen dan harus dimulai

- Sebelum atau pada tahapan feasibility
- Sebelum produksi tooling dan
- Masukkan semua pertimbangan selama proses produksi dimulai dari komponen individu sampai assembly.

Terdapat langkah dasar dalam proses FMEA yang dilakukan oleh tim desain for *six sigma* (DFSS) adalah:

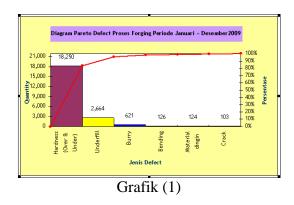
- 1. Membangun batasan proses yang dibatasi oleh struktur proses.
- 2. Membangun proses pemetaan dari FMEA yang mendiskripsikan proses produksi secara lengkap dan alat penghubung tingkat hirarki dalam struktur proses dan ruang lingkup.
- 3. Melihat struktur proses pada seluruh tingkat hirarki dimana masing-masing parameter rancangan didefinisikan.
- 4. Identifikasi kegagalan potensial pada masing-masing proses.
- 5. Mempelajari penyebab kegagalan dari pengaruhnya.

Pengaruh dari kegagalan adalah konsekuensi langsung dari bentuk kegagalan pada tingkat proses berikutnya, dan puncaknya ke Pengaruh konsumen. biasanya diperlihatkan oleh operator atau sistem pengawasan. Terdapat dua hal utama penyebab pada keseluruhan tingkat, dengan diikuti oleh pertanyaan seperti :

- 1. Apakah variasi dari input menyebabkan kegagalan ?
- Apakah yang menyebabkan proses gagal, jika diasumsikan input tepat dan sesuia spesifikasi ?
- 3. Jika proses gagal, apa konsekuensinya terhadap kesehatan dan keselamatan operator, mesin, komponen itu sendiri, proses berikutnya, konsumen dan peraturan ?
- 4. Pengurutan dari bentuk kegagalan proses potensial menggunakan *risk priority number* (RPN) sehingga tindakan dapat diambil untuk kegagalan tersebut.
- 5. Mengklasifikasikan variabel proses karakteristik sebagai khusus membutuhkan yang kendali seperti keamanan operator yang berhubungan dengan parameter proses, yang tidak mempengaruhi produk.
- 6. Menentukan kendali proses sebagai metode untuk mendeteksi bentuk kegagalan atau penyebab. Terdapat dua tipe kendali yaitu :
- 7. Rancangan yang digunakan untuk mencegah penyebab atau bentuk kegagalan dan pengaruhnya.
- 8. Kegiatan tersebut dilakukan untuk mendeteksi penyebab dalam tindakan kotektif.

- 9. Identifikasi mengukur tindakan korektif. Menurut nilai *risk priority number* (RPN), tim melakukannya dengan :
 - Mentransfer resiko kegagalan pada sistem diluar ruang lingkup pekerjaan.
 - Mencegah seluruh kegagalan.
 - Meminimumkan resiko kegagalan dengan :
 - ➤ Mengurangi *severity*.
 - Mengurangi occurance
 - Meningkatkan kemampuan deteksi.
- 10. Analisa, dokumentasi dan memperbaiki FMEA. Failure modes and effect analysis (FMEA) merupakan dokumen yang harus dianalisa dan diurus secara terus-menerus.

FMEA tidak dapat menyelesaikan maslah sehingga harus dikombinasikan dengan metode-metode 'problem solving'. FMEA hanya memberi gambaran tentang tingkat resiko suatu kegagalan. Problem solving: Brainstroming, fishbone diagram, Design of Experiment, etc.


Persiapan **FMEA** dimulai dengan membentuk team multi disiplin. Anggota team FMEA dapat terdiri dari : process engineer, industrial engineer, design engineer, operator produksi, tooling engineer, maintenance engineer, quality engineer, lain-lain, termasik pemasok, marketing.

B. PEMBAHASAN B.1 Identifikasi Masalah

Faktor yang menyebabkan terjadinya masalah dalam perusahaan adalah masalah kualitas di Departemenet Forging pada proses heat treatment. Sejauh ini persentase produk cacat masih tinggi dan sistem pengendalian kualitas yang diterapkan hingga kini belum berjalan baik, sehingga perlu untuk menganalisa permasalahan tersebut dengan menggunakan alat-alat pengendalian kualitas dengan metode statistik.

Code	Defect	Quantity	Persentase (%)	0%
	Hardness (Over & Under)	18,250	83.38%	83%
	Underfill	2,664	12.17%	96%
	Burry	621	2.84%	98%
	Bending	126	0.58%	99%
	Material dingin	124	0.57%	100%
	Crack	103	0.47%	100 p %
	Total	21,888	1.00	

Tabel (1) Sumber : PT.mitsuba Indonesia

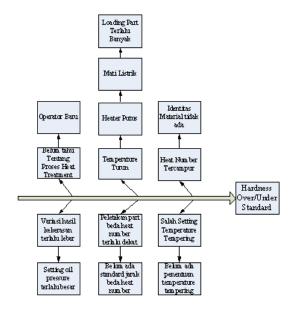
Dari data diatas permasalahan yang sering terjadi yaitu pada proses heat treatment antara lain : over Hardness dan under hardness dari standard. Untuk mengatasi permasalahan barang NG (No Good) yang tinggi dapat dilakukan *repair* atau perbaikan dengan proses ulang pada proses heat treatment. Meskipun over hardness dan under standard dapat diperbaiki dengan proses ulang pada proses heat treatment, akan tetapi dengan tingginya jumlah part yang diperbaiki akan berdampak pada naiknya biaya produksi dan juga berdampak pada turunnya *performance* dan produktivitas.

Berikut data Defect *over* dan *under hardness standard* bulan Januari - Desember tahun 2009

No.	Bulan	Total Produksi	Jumlah Defect	Persentase
1	Januari	151,142	0	0.00%
2	Februari	161,255	0	0.00%
3	Maret	179,352	0	0.00%
4	April	183,232	250	0.14%
5	Mei	230,952	1600	0.69%
6	Juni	247,176	0	0.00%
7	Juli	250,278	3600	1.44%
8	Agustus	288,542	0	0.00%
9	September	219,594	0	0.00%
10	Oktober	329,835	0	0.00%
11	November	304,306	1000	0.33%
12	Desember	155,960	11800	7.57%
			Rata-rata	0.85%

Tabel (2) Sumber : PT.mitsuba Indonesia

Grafik (2)


Dari data-data diketahui bahwa rata-rata jumlah defect tiap bulan adalah 0.85%, dengan aktual sampai dengan 7.57% pada bulan Desember. Batas limit jumlah defect proses adalah 1%, sehingga jumlah defect harus dikurangi. Dengan jumlah defect untuk NG under hardness dan Over hardness yang telah melebihi batas limit maka dipilih metode FMEA dengan tema Penurunan over hardness dan under hardness standard, dan ditargetkan untuk menurunkan jumlah NG Over Hardness dan Under hardness minimum 30% sesuai dengan kebijakan perusahaan, target selanjutnya

adalah melakukan penurunan biaya dikarenakan proses repair.

B.2 Menganalisa **Defect** Report Dengan Metode CFME (Cause Failure Mode Effect) dan Dengan Metode Diagram **Sebab-Akibat** (Fish Bone Diagram)

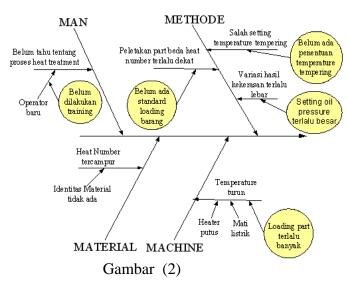
Root cause analysis adalah sebuah metode yang digunakan untuk mengklarifikasi dengan ielas penyebab dari sebuah permasalahan. Akar penyebab permasalahan ini dapat teridentifikasi dengan cara bertanya mengapa hingga tidak ada lagi jawaban yang bias dan perlu diberikan pada pertanyaan tersebut. Metode ini akan membantu untuk mengidentifikasi permasalahan pada proses yang diteliti secara jelas. Dengan menemukan akar permasalahan, pada akhirnya tindakan yang diambil akan tepat sasaran dengan mengeliminasi setiap akar penyebab terjadinya permasalahan.

Pada penelitian ini proses pengidentifikasian akar penyebab permasalahan dituangkan dalam sebuah CFME. Metode **CFME** diagram digunakan sebelum membuat Failure Modes and Effect Analysis (FMEA). CFME merupakan pengembangan dari diagram sebab akibat dan digunakan mendeteksi akar penyebab untuk permasalahan. Hasil **CFME** akan mempermudah pembuatan FMEA.

Gambar (1) CFME Over Hardness dan Under Hardness Standard

Dari hasil analisa CFME terdapat beberapa akar penyebab permasalahan yang menjadi sumber terjadinya defect rotor boss *under Hardness* dan *over hardness standard* akar penyebab tersebut yaitu:

- Operator terlalu singkat dalam memahami proses heat treatment sehingga operator terlalu cepat dalam melakukan proses dikarenakan hanya produksi memikirkan efisiensi waktu, jumlah produksi dan kurang pemahaman mengenai kualitas produk.
- Jarak antara material beda heat number yang terlalu singkat hanya 60 menit, akan berdampak pada material yang tidak terheat treatment secara sempurna, sehingga perubahan temperature dilakukan saat barang lot sebelumnya masih ada di zona tempering furnace.
- Sebaran hasil kekerasan hardness pada bagian tengah atau core


terlalu tinggi dikarenakan settingan Oil pressure terlalu besar (standard setting 0,5 kg/cm2) sehingga jumlah buih yang dihasilkan lebih banyak.

- Temperature zona hardening furnace turun sampai 840°C dikarenakan belum ada standard loading material, pada saat loading barang dengan temperature lebih berat, kapasitas heater tidak cukup kuat untuk menaikkan temperature.
- Setiap pergantian heat number, material mengalami hardness under standard atau sehingga harus dilakukan proses ulang dikarenakan settingan temperature tempering terlalu tinggi terlalu rendah atau diseragamkan 620°C. saat material dengan karbon (C) dan (Cr) lebih tinggi, hardness cenderung over standard. sebaliknya saat material dengan kadar karbon (C) dan krom (Cr) lebih rendah, hardness cenderung under standard.

Diagram sebab akibat ini digunakan untuk mencari semua unsur penyebab yang diduga menimbulkan akibat sehingga timbul suatu masalah. Dengan demikian diagram ini dapat juga digunakan untuk menentukan faktormenyebabkan faktor yang suatu karakteristik kualitas menyimpang dari spesifikasi yang sudah ditetapkan. ini menunjukkan Diagram suatu hubungan antara sebab (faktor-faktor) mengakibatkan sesuatu pada kualitas (karakteristik kualitas). Ada faktor utama vang perlu diperhatikan untuk mengenali faktorfaktor yang berpengaruh atau berakibat pada kualitas, yaitu:

- manusia

- metode kerja/cara kerja
- mesin/alat
- material/bahan
- lingkungan

B.3 Menghitung Nilai Risk Priority Number (RPN)

penyebab-penyebab Setelah timbulnya cacat dimensi pada proses pembuatan rotor boss teridentifikasi dengan diagram sebab akibat dan akar penyebab teridentifikasi dengan diagram Cause Failure Mode Effect (CFME), maka langkah analisa yang dilakukan berikutnya adalah menganalisa kegagalan proses yang potensial, dan mengevaluasi prioritas resiko untuk nantinva membantu menentukan tindakan yang pada sesuai tahap implementasi.

Data-data yang digunakan untuk membuat Failure Modes and Effect Analysis (FMEA) ini diambil dari hasil analisia akar permasalahan yang didokumentasikan dalam diagram Cause Failure Mode Effect (CMFE). Untuk membedakan antara modus kegagalan (modes of failure), penyebab (cause of failure), dan efek (effect of failure), maka diambil 3 kotak terakhir dan tiap-

tiap analisis akar penyebab masalah masing-masing sebagai cause of failure, modes of failure, dan effect of failure. Angka-angka bobot yang digunakan pada Failure Modes and Effect Analysis (FMEA) ini didapat dari hasil diskusi subyektif pihak-pihak terkait antara lain operational, maintenance dan quality control.

Karakteristik Produk Yang Diharapkan	Mode Of Failure	Cause Of Failure	Effect Of Failure	D	o	s	RPN	Rank
	1. Variasi kekerasan terlalu lebar	Setting oil pressure terlalu tinggi	Hasil pengecheckan kekerasan / hardness pada bagian core terlalu menyebar	5	9	9	405	1
	Peletakan jarak antara material beda heat number berdekatan	Jarak antara material beda heat number 60 menit	Perubahan temperatur dilakukan saat barang lot sebelumnyamasih ada di zone tempering furnace	4	8	9	288	4
Hardness Rotor Boos	Proses setting temperatur tempering tidak standard	Setting temperatur terlalu tinggi / rendah	Barang dengan karbon dan chrom lebih besar, hardnessnya akan cenderung over standard	4	9	9	324	3
Masuk Range Standard	Operator terburu- buru dalam memberikan jarak antara heat number	Belum tahu tentang proses heat treatment	Operator hanya memikirkan efisiensi dan jumlah produksi belum memikirkan mengenai kualitas	4	8	00	256	5
	5. Temperatur hardening furnace turun sampai 840°C	Belum ada standard loading material	Saat loading barang dengan berat dimensi lebih besar akan menyebabkan temperatur furnace turun, karena over capacity	6	8	7	336	2
	6. Heat number tercampur	Identitas material tidak ada	Pada saat pergantian heat number tidak diketahui heat number materialnya	7	2	5	70	6

Tabel (3)
FMEA defect Rotor boss *Under* dan
Over Hardness Standard

Pada tabel 3 RPN defect rotor boss *under* dan *over hardness standard* dihasilkan beberapa modus kegagalan yang memiliki nilai resiko tertinggi :

Rank 1, RPN 405 Oil pressure terlal

Oil pressure terlalu tinggi (setting 0,5 kg/cm2) sehingga jumlah buih yang dihasilkan lebih banyak, sehingga menyebabkan persebaran hasil kekerasan hardness pada bagian tengah/core terlalu besar. Apabila oil pressure terlalu tinggi akan meyebabkan bagian part yang bersentuhan dengan buih, kekerasannya akan lebih rendah dibandingkan langsung dengan yang bersentuhan dengan oil, karena pendinganan yang lebih lambat.

• Rank 2, RPN 336

Belum adanya standard loading material, saat loading barang dengan temperatur lebih berat, kapasitas heater tidak cukup kuat untuk menaikkan temperature karena *over capacity* sehingga menyebabkan temperatur hardening furnace turun sampai 840°C.

• Rank 3, RPN 324

tempering Setting temperatur terlalu tinggi/ terlalu rendah, settingan temperatur tempering diseragamkan 620°C. Yang menyebabkan setiap pergantian heat number, material mengalami hardness atau under over hardness standard dimana saat material dengan kadar karbon (C) dan krom (Cr) lebih tinggi, hardness cenderung over standard sebaliknya, saat material dengan kadar karbon (C) dan krom (Cr) lebih tinggi, hardness cenderung under standard sehingga harus dilakuakan proses ulang.

B.4 Action Planning for Failure Mode

Dari tabel 3 terdapat enam bentuk kegagalan potensial yang perlu mendapat perhatian lebih untuk dilakukan perbaikan diantaranya settingan oil pressure terlalu tinggi, jarak antara material beda heat number berdekatan, Settingan temperatur tempering terlalu tinggi atau rendah, operator belum tahu tentang proses haet treatment, belum ada standard loading material yang meyebabkan temperature hardening furnace zone 1 turun, identitas material tidak ada. Solusi tindakan perbaikan ini akan diberikan pada semua bentuk potensi kegagalan yang ada (dapat dilihat pada tabel 3)

Penentuan solusi permasalahan defect Rotor boss *Under* dan *Over Hardness Standard* dengan tabel *Action Planning for Failure Mode* berdasarkan urutan Prioritas (rank)

- Setting oli pressure terlalu tinggi (0.5 kg/cm2)
 Oli pressure diubah menjadi 0.2 kg/cm2 sehingga buih yang dihasilkan menjadi sedikit sehingga persebaran hasil kekerasan pada bagian core / tengah menjadi lebih sempit sekitar 3 point HRC.
- Temperatur hardening furnace zone turun samapai 840° C, karena belum ada *standard loading* material Dibuatkan standard loading material dengan batas kapasitas maksimum 310 kg/jam sehingga temperatur hardening tidak turun lagi.
- Proses setting temperature tempering tidak standard Sebelum dilakukan penentuan temperatur dilakukan trial penentuan temperatur tempering dilakukan berdasarkan hasil trial yaitu:
 - 1. Setiap kenaikan temperatur 10°C akan menurunkan hardness sebesar 1 HRC.
 - 2. Setiap penurunan temperatur 10°C akan menaikkan hardness sebesar 1 HRC.

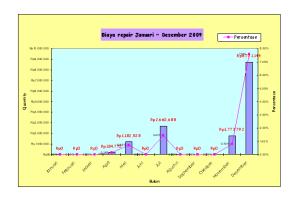
Sehingga tempering temperatur lebih tepat.

Berikut ini adalah tabel gambaran *action planning for failure* model berdasarkan urutan rangking RPN

Rank	Potential Failure Mode	Potential Effect of Mode	Fotential cause (s) meshanisme (s) failure	RPN	Recommended action
1	Setting oil pressure terlatu. tinggi (7.5)	Hasit congesheckan kekerasan / hardresis pada bagian tengah tertaku menyebar	Oil pressure tinggi daget menghasilkan bancak, bub, sehingga, proses pendingnan part mengab beragam	405	Setting oil pressure dan 0.5 diubuh menjadi 0.2 sebingga bulb yang dibabihan menjadi sedikit
2	Temperatur handening fumace zone turun samapai 840° C, karena belum ada standard loading material	Barang dengan berat dimensi lebih berar akian menyebabkan temperatur fumase tunun, karena over capacity.	Loading material <u>diseragamkan.</u>	336	Dibuatkan standard loading material dengan batas kapasikas maksimum 310 kg/jam
3 8	Proces cetting			Disustion standard connection temperature temperature distribution percentium temperature distribution percentium temperature removement distribution bertias alican.	
	temperature tempering tidak standard	Barang dengan kadarikarbon dan chrom lebih rendah, hardnessnya akan cenderung low standard	620°C mataupun material beda heat number	324	hasil trialiyatu.; 1. Setae benakan temperatur 10°C akan menunckan hardners sebesar 1 14°C. 2. Setae benunuan temperatur 10°C akan menaikkan hardners sebesar 1 HRC.
4	Jorak artara material berbeda heat number berdekatan	Perubahan temperatur ditakukan saat barangiot sebelumnya masih ada dizone tempering fumace	Jarak antar material beda heat number 60 menit	288	Jarak artara material berbeda heat number ditambah dari 60 menit menjadi 60 menit
5	Operator terforo-buru datam thembedikan jarak antara heat number	Operator hanya memikikan etsierdi dan jumlah produksi, belum memikikan mengenai kualitas.	Selum diberikan training mengenal proses heat treatment	258	Diadakan training heat treatment until settle operator
6	Heat number tensamour	Pada saat perpantian heat number tidak disetahui heat numbernya	Identitas material tidak ada	70	Setiag heat number material diberi kartu identitias

Tabel (4)

Perusahaan akan melakukan usulan perbaikan hanya pada bentuk kegagalan potensial yang memiliki nilai RPN dalam kategori resiko tinggi. Implementasi dari rekomendasi usulan perbaikan tersebut dilakukan bentuk kegagalan potensial : settingan oil pressure terlalu tinggi, Settingan temperatur tempering terlalu tinggi atau rendah, belum ada standars loading material yang meyebabkan temperature hardening furnace zone turun. Acuan yang digunakan adalah nilai dari RPN, karena nilai tersebut diperoleh berdasarkan tingkat keparahan dari kegagalan potensial mempengaruhi hasil produksi, tingkat keseringan bentuk kegagalan potensial terjadi dan kemampuan untuk deteksi.

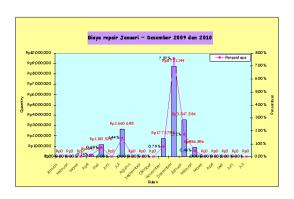

Cause Mode	Solusi Potensial	Tanggung, jawah	Waktu	
Operator tedalu gepat dalam	<u>Rilakukan</u> training <u>mengenai proses</u> heat treatment		30/1/2010	
memberikan jarak antara heat number	Pembuatan jadwal pelatihan	QC & Production	12/2/2010	
number	Pembuatan materi pelatihan		12/2/2010	
Peletakan jarak antara material	Analisa jarak waktu antara material beda heat number			
beda heat number berdekatan	Dibuatkan standar jarak antara heat number ditambah dari 60 menit menjadi 80 menit	Production	10/1/2010	
Setting oil pressure terlalu	Analisa setting oil pressure pada proses quenching	ac		
tinggi	Dibuatkan standard setting oil pressure diubah dari 0,5 kg/cm2 menjadi 0,2 kg/cm2	& Production	16/1/2010	
Temperature zone 1 turun	Analisa kapasitas material pada saat temperatur hardening	QC		
sampai 840°C, karena belum ada standard loading material	Dibuatkan standard loading material dengan batas kapasitas maksimum 310 kg/jam	& Production	12/1/2010	
	Analisa setting temperatur tempering			
Setting temperatur tempering terlalu tinggi/ terlalu rendah	Dibuskan standard genentuan temperatur tempering berdasakan hasil tali yaki. 1. Sebap kanaikan temperatur 10°C akan menusuokan hardness sebesar 1 HBC. 2. Sebap penurunan temperatur 10°C akan menaikkan hardness sebesar 1 HBC.	QC & Production	12/1/2010	
Identifikasi material tidak ada	Dibuatkan kartu identitas pada material	ac	10/1/2010	

Tabel (5) Solusi dan Tanggung Jawab Implementasi

No	Bulan	Total Produksi	Jumlah defect	Biaya repair heat treatment	Biaya repair Shotblasting	Total biaya repair	Persentase
1	Januari	151,142	0	Rp0	Rp0	Rp0	0.00%
2	Februari	161,255	0	Rp0	Rp0	Rp0	0.00%
3	Maret	179,352	0	Rp0	Rp0	Rp0	0.00%
4	April	183,232	250	Rp138,578	Rp46,193	Rp184,770	0.14%
5	Mei	230,952	1600	Rp886,896	Rp295,632	Rp1,182,528	0.69%
6	Juni	247,176	0	Rp0	Rp0	Rp0	0.00%
7	Juli	250,278	3600	Rp1,995,516	Rp665,172	Rp2,660,688	1.44%
8	Agustus	288,542	0	Rp0	Rp0	Rp0	0.00%
9	September	219,594	0	Rp0	Rp0	Rp0	0.00%
10	Oktober	329,835	0	Rp0	Rp0	Rp0	0.00%
11	November	304,306	2400	Rp1,330,344	Rp443,448	Rp1,773,792	0.79%
12	Desember	155,960	11800	Rp6,540,858	Rp2,180,286	Rp8,721,144	7.57%

Tabel (5) Biaya repair bulan Januari - Desember tahun 2009

Sumber: PT. Mitsuba Indonesia


Grafik (3)

Dari grafik 3 terlihat biaya repair rotor boss selama bulan januari ~ desember tahun 2009 dimana persentase terakhir mengalami peningkatan yang tinggi, sehingga diperlukan analisa lebih lanjut untuk melakukan perubahan. Agar dapat meningkatkan efisiensi biaya produksi rotor boss kembali.

Biaya Repair Setelah Perbaikan

	No	Bulan	Total Produksi	Jumlah defect	Biaya repair heat treatment	Biaya repair Shotblasting	Total biaya repair	Persentase
ĺ	1	Januari	279,602	4800	Rp2,660,688	Rp886,896	Rp3,547,584	1.72%
	2	Februari	258,840	1200	Rp665,172	Rp221,724	Rp886,896	0.46%
	3	Maret	362,212	0	Rp0	Rp0	Rp0	0.00%
	4	April	316,586	0	Rp0	Rp0	Rp0	0.00%
	5	Mei	369,148	0	Rp0	Rp0	Rp0	0.00%
	6	Juni	309,146	0	Rp0	Rp0	Rp0	0.00%
	7	Juli	326,022	0	Rp0	Rp0	Rp0	0.00%

Tabel (6)
Biaya repair bulan Januari - Desember tahun 2009

Grafik (4)

Dari analisa FMEA (Failure Mode And Effect Analysis) dan solusi action FMEA suatu tahap yang dilakukan untuk hasil perbaikan. Dimana akan dijadikan sebagai pembanding dengan nilai sebelum perbaikan rata-rata jumlah defect tiap bulan adalah 0.85% dan setelah perbaikan nilai defect turun 30% menjadi 0,46%, serta penurunan biaya (Efisiensi) biaya repair proses heat treatment dari 8 juta menjadi 3 juta

C Kesimpulan

Berdasarkan hasil implementasi rekomendasi usulan perbaikan yang telah dilakukan, dapat diambil kesimpulan :

1. Berdasarkan pengolahan data defect case selama 2009 dari bulan Januari ~ Desember 2009 diperoleh data bahwa rotor boss NG over hardness dan under hardness reject rotor boss sebelum perbaikan sebesar 7.57 % dan setelah perbaikan mengunakan metode FMEA reject turun 30%.

- 2. Standard operational proses dikaji dan disempurnakan dengan
 - Standarlisasi
 - Penentuan jarak antara material beda heat number dari 60 menit menjadi 80 menit.
 - Penentuan temperatur tempering dilakukan oleh QC berdasarkan hasil trial.
 - Penyusunan part pada conveyor disesuaikan menurut berat dan dimensi part.
- 3. Sebelum perbaikan rata-rata jumlah defect tiap bulan adalah 0.85 % dan setelah perbaikan nilai defect turun 30% menjadi 0,46%, serta penurunan biaya (Efisiensi) biaya repair proses heat treatment dari 8 juta menjadi 3 juta.

D Saran

Setelah melakukan penelitian dan analisa defect untuk rotor boss diharapkan hasilnya dapat membantu pihak perusahaan terkait untuk mengurangi defect rotor boss *over* dan *under hardness standard*.

Saran-saran yang dapat digunakan berkaitan dengan penelitian yang telah dilakukan adalah sebagai berikut:

- 1. Memberikan training secara berkala untuk setiap departemen yang dimaksudkan untuk skill up setiap anggotanya sehingga tersedia sumber daya manusia yang berkualitas dan berkopeten.
- Perbaikan secara terus menerus untuk mengurangi defect perlu dilakukan secara berkesinambungan untuk mencapai zero defect sehingga prioritas pada customer satisfaction dapat tercapai.

E.DAFTAR PUSTAKA

- ccAriani, Dorothea W. *Pengendalian Kualitas Statistik*. Jilid 1.
 Yogyakarta: Penerbit ANDI.
- Feigeunbaum, A.U. 1981. *Total Quality Control*. Third Edition MC. Graw Hill Book Company.
- Gasperz, Vincent. 1998. Statistical Proses Control – Penerapan Teknik-teknik Statistikal dalam Manajemen Total. Jakarta : Gramedia Pustaka Umum.
- Iftikar, Z, Sutalaksana. 1979. *Teknik Tata Cara Kerja*. Bandung:
 Jurusan Teknik Industri ITB.
- Ishikawa, Kaoru. 1998. *Teknik Penuntun Pengendalian Mutu*. Penerbit Mediyatama Sarana Perkasa.
- Tjiptono, Fandy., dan Anastasia Diana. 2001. *Total Quality Manajemen*. Yogyakara: Penerbit Andi.
- Ir R Bagus Yosan, MT. 2009. Modul Realibility Centered Maintenance. Jakarta: Jurusan Teknik Industri Universitas Mercu Buana.
- Fitrona Indonesia, Sidoarjo Company.

 2006. Upaya Menurunkan
 Jumlah Cacat Pada Mesin Dual
 D3E dengan Menggunakan
 Metode FMEA
 http://www.google.com/ITS Und
 ergraduate-7131502109025/06April 2010/11:43
 AM.
- Agus Purwanto.2009. Analisa Defect
 Report Untuk Produk Contact
 Series di PT.JST Indonesia.
 Tugas Akhir, Jurusan Teknik
 Industri., Universitas Mercu
 Buana.

:

KATA PENGANTAR

Puji dan syukur penulis panjatkan kehadirat Allah SWT atas segala rahmat dan hidayah-Nya, penulis dapat menyelesaikan penyusunan Laporan Tugas Akhir ini yang berjudul "Aplikasi Metode Failure Mode And Effects Analysis (FMEA) untuk Pengendalian kualitas pada proses Heat Treatment PT.Mitsuba Indonesia".

Laporan Tugas Akhir ini disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik pada Universitas Mercu Buana Jakarta. Namun selesainya laporan Tugas Akhir ini tidak lepas dari bantuan berbagai pihak, oleh karena itu pada kesempatan ini penulis ingin mengucapkan terima kasih yang sebesar-besarnya kepada:

- Bapak M. Kholil, selaku Ketua Jurusan Teknik Industri dan Pembimbing Tugas Akhir Universitas Mercu Buana atas bimbingan dan bantuan referensi-referensi yang diberikan.
- 2. Bapak R Bagus Yosan, selaku Pembimbing Tugas Akhir Universitas Mercu Buana atas bimbingan dan bantuan referensi-referensi yang diberikan.
- 3. Bapak Mumu Muhidin, selaku Human Resources Development (HRD) Manager pada PT. MITSUBA INDONESIA atas ijin dan bantuannya dalam memberikan data dan informasi yang dibutuhkan dalam penyusunan Laporan Tugas Akhir ini.
- 4. Ibu Ari Uliana, selaku Forging Production Manager atas masukan dan bantuannya demi terselesaikannya Laporan Tugas Akhir ini.
- Bapak Arif Hidayat, selaku Foreman lini Forging atas referensi-referensi yang telah diberikan.

- 6. Bapak Munadih Murkasan, selaku koordinator training atas referensi-referensi yang telah diberikan.
- 7. Seluruh staff dan karyawan bagian Forging atas bantuan dan kebaikannya dalam membimbing penulis.
- 8. Kedua Orang tuaku yang tercinta dan keluarga semua, atas bantuan dan dukungannya yang tak terhingga.
- 9. Teman-temanku ulil, vera, jen-jen, riko, andin, haris, I love U full (Aza-aza fighting)
- Seluruh rekan-rekan angkatan 9 Jurusan Teknik Industri Universitas Mercu Buana Jakarta.

Semoga Tuhan YME melimpahkan rahmat dan hidayahnya kepada mereka semua, Amin. Namun penulis menyadari bahwa masih terdapat kekurangan atau kesalahan dalam penyajian Laporan Tugas Akhir ini. Akhir kata, penulis mengharapkan saran dan kritik yang positif sehingga dapat bermanfaat bagi penulis, pembaca dan pihak-pihak yang terkait.

Penulis

DAFTAR ISI

Halaman	Judul		i
Lembar P	enges	ahan	ii
Lembar P	ernya	taan	iii
Abstrak (Bahas	sa Indonesia)	iv
Abstrak (Bahas	sa Inggris)	v
Kata Peng	gantar		vi
Daftar Isi			viii
Daftar Ta	bel		xi
Daftar Ga	mbar		xii
Daftar Gr	afik		xiii
BAB I	PEN	DAHULUAN	
	1.1	Latar Belakang	1
	1.2	Identifikasi Masalah	3
	1.3	Perumusan Masalah	5
	1.4	Tujuan Penelitian	5
	1.5	Batasan Masalah	6
	1.6	Metodologi Penelitian	6
	1.7	Sistematika Penulisan	7
	1.8	Sumber Pustaka	8
BAB II	LAN	NDASAN TEORI	
	2.1	Pengertian Kualitas	9
		2.1.1 Tujuan Pengendalian Mutu	10
		2.1.2 Ruang Lingkup Pengendalian Mutu	10

	2.2	CFME (Cause Failure Mode Effect)	11
	2.3	Sejarah FMEA (Failure Mode Effect Analysis)	12
	2.4	Dasar FMEA (Failure Mode Effect Analysis)	12
	2.5	Pengertian FMEA (Failure Mode Effect Analysis)	14
	2.6	Tujuan FMEA (Failure Mode Effect Analysis)	16
	2.7	Langkah Dasar FMEA (Failure Mode Effect Analysis)	17
	2.8	Identifikasi Elemen-elemen Proses FMEA (Failure Mode	
		Effect Analysis)	19
	2.9	Menentukan Severity, Occurance, Detection	22
		2.9.1 Severity	22
		2.9.2 Occurance	25
		2.9.3 Detection	26
	2.10	Risk Prority Number (Angka Prioritas Resiko)	28
	2.11	Analisa Sistem Pengukuran (Measurement System Analysis)	28
		2.11.1 Cause And Effect Diagram	29
		2.11.2 Pareto Diagram	30
BAB III	ME	ΓODOLOGI PENELITIAN	
	3.1	Identifikasi Masalah	33
	3.2	Studi Pendahuluan	33
		3.2.1 Studi Pustaka	34
		3.2.2 Studi Lapangan	34
	3.3	Perumusan Masalah	35
	3.4	Tujuan Penelitian	35
	3.5	Pengumpulan Data	36

	3.6	Pengolahan Data	37
	3.7	Implementasi Dari Solusi Perbaikan	37
	3.8	Kesimpulan Dan Saran	37
BAB IV	PEN	IGUMPULAN DAN PENGOLAHAN DATA	
	4.1	Pengumpulan Data	38
	4.2	Gambaran Umum Perusahaan	39
		4.2.1 Profil Perusahaan	39
		4.2.2 Struktur Organisasi	40
		4.2.3 Hasil Produksi	43
	4.3	Proses Produksi	45
	4.4	Inspeksi Hasil Produk Forging Pada Proses Heat Treatment	
			48
	4.5	Defect Report Dengan Metode CFME (Cause Failure Mode	
		Effect)	52
	4.6	Pengolahan Data	53
		4.6.1 Severity	54
		4.6.2 Occurance	54
		4.6.3 Detection	54
BAB V	ANA	ALISA PEMBAHASAN	
	5.1	Analisa Defect Report Dengan Metode Diagram Sebab Akibat	
		(Fishbone Diagram)	56
	5.2	Analisa Defect Report Dengan Metode CFME (Cause Failure	
		Mode Effect)	58
	5.3	Pembuatan FMEA (Failure Mode And Effect Analysis)	60

	5.4	FMEA Defect Rotor Boss Under Hardness Dan Over	64
		Hardness	
	5.5	Action Planning For Failure Mode	
		5.5.1 Rotor Boss Under Hardness Dan Over Hardness	65
	5.6	Perbedaan Dan Kondisi Sebelum Dan Sesudah Implementasi	
		Rekomendasi	70
	5.7	Validasi	75
BAB VI	KES	IMPULAN DAN SARAN	
	6.1	Kesimpulan	76
	6.2	Saran	77
Daftar Pus	staka		78
Lampiran			

DAFTAR TABEL

		Halaman
Tabel 1.1	Tabel Data Defect Proses Forging Bulan Januari ~ Desember	3
	2009	
Tabel 2.1	Tabel Kriteria Evaluasi Dan Sistem Peringkat Untuk Severity	23
	Of Effect Dalam FMEA Process	
Tabel 2.2	Tabel Automotive Industry Action Group (AIAG) Occurance	25
	Rating (Source : FMEA 3 rd Edition AIAG)	
Tabel 2.3	Tabel Automotive Industry Action Group (AIAG) Detection	26
	Rating (Source : FMEA 3 rd Edition AIAG)	
Tabel 4.1	Tabel Jumlah Defect Proses Forging	49
Tabel 4.2	Tabel Data Defect Over Hardness Dan Under Hardness Bulan	50
	Januari ~ Desember 2009	
Tabel 4.3	Nilai Severity, Detection, Occurance	55
Tabel 5.1	Failure Modes And Effect Analysis	63
Tabel 5.2	Action for Failure Modes berdasarkan urutan prioritas (rank)	67
Tabel 5.3	Solusi dan Tanggung Jawab Implementasi	70
Tabel 5.4	Biaya repair Sebelum Perbaikan	71
Tabel 5.5	Biaya repair Sebelum Perbaikan	73

DAFTAR GAMBAR

		Halaman
Gambar 2.1	Diagram Pareto	31
Gambar 3.1	Metodologi Penelitian	34
Gambar 4.1	Hasil Produk	45
Gambar 4.3	CFME Over Hardness Dan Under Hardness	54
Gambar 5.1	Fish Bone Diagram Over Hardness dan Under Hardness	57
	Standard	
Gambar 5.2	CFME Over Hardness dan Under Hardness Standard	58

DAFTAR GRAFIK

	Hala	aman
Grafik 1.1	Diagram Jumlah Produksi Forging Bulan Januari ~ Desember 2009	2
Grafik 1.2	Diagram Pareto Defect Proses Forging	4
Grafik 4.1	Diagram Pareto Jumlah Defect Proses Forging	51
Grafik 4.2	Pergerakan Defect Over Hardness Dan Under Hardness Bulan	53
	Januari ~ Desember tahun 2009	
Grafik 5.1	Biaya repair sebelum perbaikan bulan januari ~ Desember 2009	73
Grafik 5.2	Biaya repair setelah perbaikan bulan januari ~ Desember 2009 dan	74
	januari ~ juli 2010	