Tugas Akhir

Pengujian Proses Hot Dip Galvanis Terhadap Kekerasan Dan Struktur Mikro Baja Karbon Rendah Tipe SPHC JIS G 3131

Disusun Oleh:

Haududdin El Baqi

41305010037

Program Studi Teknik Mesin

Fakultas Teknologi Industri

Universitas Mercu Buana

Lembar Pengesahan

Tugas Akhir

Pengujian Proses Hot Dip Galvanis Terhadap Kekerasan Dan Struktur Mikro Baja Karbon Rendah Tipe SPHC JIS G 3131

Disusun Oleh:

Haududdin El Baqi

41305010037

Program Studi Teknik Mesin

Fakultas Teknologi Industri

Universitas Mercu Buana

Tugas ini telah diperiksa dan disetujui oleh:

Koordinator Tugas Akhir

Dosen Pembimbing Tugas Akhir

(Dr. Abdul Hamid, M. Eng)

(Ir. Yuriadi Kusuma, M. Eng)

ABSTRAK

Di zaman era global ini penggunaan baja sangat meningkat khususnya baja karbon yang berbentuk pelat hasil pengerolan panas karena baja ini mempunyai sifat mudah dibentuk. Tapi baja ini juga mempunyai kekurangan yaitu mudah terkorosi sehingga banyak cara yang dilakukan untuk menghambat laju korosi, salah satunya dengan metode galvanisi yaitu pelapisan baja dengan seng. Proses galvanis ini dilakukan dengan cara mencelupkan baja ke dalam leburan seng (Hot Dip), ini akan mempengaruhi kekerasan dan struktur mikro pada baja tersebut.

Bahan yang digunakan dalam penelitian ini adalah baja karbon rendah tipe SPHC JIS G 3131 dengan variasi temperatur 445°C, 450°C, 455°C dan waktu 5, 10, 15 menit. Hasil penelitian menunjukan kekerasan baja sebelum di galvanis adalah 105.8 Kg/mm² dan kekerasan baja tertinggi sesudah dilakukan proses Hot Dip Galvanis adalah pada temperatur 445°C dan 455°C dengan waktu pencelupan 5 menit dan temperatur 445°C dengan waktu pencelupan 10 menit yaitu 107.2 Kg/mm², sedangkan kekerasan baja terendah pada temperatur 450°C dan 455°C dengan waktu celup 10 menit dan 15 menit yaitu 101.5 Kg/mm² dengan struktur mikro ferit dan perlit.

KATA PENGANTAR

Dengan memanjatkan puji syukur dan bersujud sembah kehadirat Allah S.W.T atas segala limpahan berkat serta karunianya sehingga penulis dapat menyelesaikan tugas akhir ini. Penulis menyadari keterbatasan sebagai manusia biasa yang tak lepas dari segala kesalahan, untuk itu dengan segala kerendahan hati penulis mengharapkan kritik dan saran dari semua pembaca agar dapat lebih menyempurnakan tugas akhir ini.

Selesainya tugas akhir ini tak lepas dari peranan sebagai pihak yang sedikit banyak telah membantu, untuk itu penulis ingin mengucapkan terima kasih yang sebesar-besarnya kepada :

- 1. Kedua orang tua dan adik atas segala Do'a, kasih sayang dan bantuannya.
- Bapak Dr.Abdul Hamid, M.Eng, selaku Koordinator Tugas Akhir dan Ketua Jurusan Teknik Mesin.
- 3. Ir. Yuriadi Kusuma, M. Eng, selaku dosen pembimbing utama tugas akhir.
- 4. Seluruh dosen dan staf karyawan Jurusan Teknik Mesin.
- Bapak Ir. Zaenal, selaku membantu penelitian proses Hot Dip Galvanis (Metallografi) dan konsultasi penelitian di Universitas Indonesia.

 Wahyu, Agus, Parto, Amat, Mole, Doni, Samdiyono, Junaedi, dan seluruh rekan-rekan Teknik Mesin khususnya angkatan 2005 terima kasih atas bantuanya.

7. Nurhanifah, terima kasih atas support dan pengertianya.

Terima kasih atas segala bantuannya semoga Allah S.W.T memberikan balasan seperti yang telah penulis dapatkan. Akhir kata penulis berharap semoga tugas akhir ini dapat bermanfaat bagi para pembaca.

Jakarta, 15 Januari 2010

Penulis

DAFTAR ISI

LEMBAR PENGESAHAN		
ABSTRAI	K	ii
KATA PE	KATA PENGANTAR DAFTAR ISI DAFTAR GAMBAR	
DAFTAR		
DAFTAR		
DAFTAR	TABEL	xiii
NOMENK	KULAR	xiv
BAB I	PENDAHULUAN	
	1.1. Latar Belakang	1
	1.2. Tujuan Penelitian	1
	1.3. Ruang Lingkup Penelitian	2
	1.4. Sistematika Penulisan	2
BAB II	STUDI LITERATUR	
	2.1. Galvanisasi Sistem Panas	4
	2.2. Hot Dip Galvanis	4
	2.1.1. Degreasing	5

	2.1.2. Acid Picling	6
	2.1.3. Water Rinsing	6
	2.1.4. Prefluxing	6
	2.1.5. Molten Zinc Bath	6
	2.1.6. Quenching	7
	2.3. Galvanizing	9
	2.3.1. DPN (Diamond Pyramid Number)	9
	2.4. Keuntungan Hot Dip Galvanizing	10
	2.5. Karakteristik Lapisan Hot Dip Galvanizing	
	menutupi dan melapisi dengan baik.	10
	2.5.1. Perlindungan Barrier dan Katoda	10
	2.5.2. Anti Goresan	11
BAB III	PROSEDUR PENELITIAN	
	3.1. Material Penelitian	13
	3.2. Proses Hot Dip Galvanis	14
	3.3. Pengukuran Tebal Lapisan	15
	3.4. Pengujian	15
	3.4.1. Pengujian Kekerasan	15
	3.4.2. Pengujian Metallografi	17

BAB IV HASIL PENELITIAN DAN ANALISA

	4.1. Hasil Penelitian	18
	4.1.1. Pengukuran Tebal Lapisan	18
	4.1.2. Hasil Uji Kekerasan	19
	4.1.3. Hasil Metallografi	25
	4.2. Analisa	36
	4.1.1. Analisa Ketebalan Lapisan	36
	4.1.2. Analisa Kekerasan	37
	4.1.3. Pengamatan Struktur Mikro	38
BAB V	KESIMPULAN DAN SARAN	
	5.1. Kesimpulan	39
	5.2. Saran	40

DAFTAR GAMBAR

Gambar 2.2.	Proses Hot Dip Galvanis	5
Gambar 3.1.	Diagram Alir Penelitian	12
Gambar 3.2.	Ukuran Spesimen Uji	14
Gambar 3.3.	Lokasi Penjejakan Kekerasan	16
Gambar 3.4.	Jejak Indentor Vickers	16
Gambar 3.5.	Identor Piramida Intan Vickers	17
Gambar 3.6.	Lokasi Pemotretan Metallografi	17
Gambar 4.1.	Grafik Tebal Lapisan Zn (Micron)	19
Gambar 4.2.	Grafik Kekerasan Pada Baja Tanpa Lapisan Zn	23
Gambar 4.3.	Grafik Kekerasan Baja Dan Lapisan Zn Pada Lapisan	
	Temperatur 445°C	23
Gambar 4.4.	Grafik Kekerasan Baja Dan Lapisan Zn Pada Lapisan	
	Temperatur 450°C	24
Gambar 4.5.	Grafik Kekerasan Baja Dan Lapisan Zn Pada Lapisan	
	Temperatur 455°C	24
Gambar 4.6.	Struktur Mikro Baja Tanpa Lapisan Seng (Zn),	
	Pembesaran 200 X.	25

Gambar 4.7.	Struktur Mikro Baja Tanpa Lapisan Seng (Zn),	
	Pembesaran 500 X	25
Gambar 4.8.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)	
	Pada Temperatur 445°C Dan Dengan Waktu 5 Menit,	
	Pembesaran 200 X	26
Gambar 4.9.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)	
	Pada Temperatur 445°C Dan Dengan Waktu 5 Menit,	
	Pembesaran 500 X	26
Gambar 4.10.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)	
	Pada Temperatur 445°C Dan Dengan Waktu 10 Menit,	
	Pembesaran 200 X	27
Gambar 4.11.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)	
	Pada Temperatur 445°C Dan Dengan Waktu 10 Menit,	
	Pembesaran 500 X	27
Gambar 4.12.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)	
	Pada Temperatur 445°C Dan Dengan Waktu 15 Menit,	
	Pembesaran 200 X	28
Gambar 4.13.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)	
	Pada Temperatur 445°C Dan Dengan Waktu 15 Menit,	
	Pembesaran 500 X	28

Gambar 4.14.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 450°C Dan Dengan Waktu 5 Menit,		
	Pembesaran 200 X	29	
Gambar 4.15.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 450°C Dan Dengan Waktu 5 Menit,		
	Pembesaran 500 X	29	
Gambar 4.16.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 450°C Dan Dengan Waktu 10 Menit,		
	Pembesaran 200 X	30	
Gambar 4.17.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 450°C Dan Dengan Waktu 10 Menit,		
	Pembesaran 500 X	30	
Gambar 4.18.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 450°C Dan Dengan Waktu 15 Menit,		
	Pembesaran 200 X	31	
Gambar 4.19.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 450°C Dan Dengan Waktu 15 Menit,		
	Pembesaran 500 X	31	

Gambar 4.20.	. Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 455°C Dan Dengan Waktu 5 Menit,		
	Pembesaran 200 X	32	
Gambar 4.21.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 455°C Dan Dengan Waktu 5 Menit,		
	Pembesaran 500 X	32	
Gambar 4.22.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 455°C Dan Dengan Waktu 10 Menit,		
	Pembesaran 200 X	33	
Gambar 4.23.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 455°C Dan Dengan Waktu 10 Menit,		
	Pembesaran 500 X	33	
Gambar 4.24.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 455°C Dan Dengan Waktu 15 Menit,		
	Pembesaran 200 X	34	
Gambar 4.25.	Struktur Mikro Baja Dengan Lapisan Seng (Zn)		
	Pada Temperatur 455°C Dan Dengan Waktu 15 Menit,		
	Pembesaran 500 X	34	

Gambar 4.26.	Jejak Mikro Hv Tanpa Lapisan Seng (Zn),	
	Pembesaran 200 X	35
Gambar 4.27.	Satu (1) Jejak Mikro Hv Pada Lapisan Seng (Zn),	
	Pembesaran 200 X	35
Gambar 4.28.	Dua (2) Jejak Mikro Hv Pada Lapisan Seng (Zn),	
	Pembesaran 200 X	36

DAFTAR TABEL

Tabel 3.1.	Komposisi Kimia	13
Tabel 4.1.	Ketebalan Lapisan Spesimen	18
Tabel 4.2.	Hasil Uji Kekerasan Baja Tanpa Galvanis	19
Tabel 4.3.	Hasil Uji Kekerasan Baja Dasar Pada	
	Temperatur 445°C	20
Tabel 4.4.	Hasil Uji Kekerasan Baja Dasar Pada	
	Temperatur 450°C	21
Tabel 4.5.	Hasil Uji Kekerasan Baja Dasar Pada	
	Temperatur 455°C	22

NOMENKLATUR

D	Penjejakan	(µm)
Hv	Kekerasan Vickers	(Kg/mm²)
P	Beban Penekanan	(Kg)
T	Temperatur	(°C)
θ	Sudut Indentor Vickers	(°)